These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9765049)

  • 1. A comparison of fast Fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data.
    Spyers-Ashby JM; Bain PG; Roberts SJ
    J Neurosci Methods; 1998 Aug; 83(1):35-43. PubMed ID: 9765049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the spectral broadening of simulated Doppler signals using FFT and AR modelling.
    Keeton PI; Schlindwein FS; Evans DH
    Ultrasound Med Biol; 1997; 23(7):1033-45. PubMed ID: 9330447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fourier analysis of biological transients.
    Harris CM
    J Neurosci Methods; 1998 Aug; 83(1):15-34. PubMed ID: 9765048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of weight load on physiological tremor: the AR representation.
    Miao T; Sakamoto K
    Appl Human Sci; 1995 Jan; 14(1):7-13. PubMed ID: 7621136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral broadening of clinical Doppler signals using FFT and autoregressive modelling.
    Keeton PI; Schlindwein FS
    Eur J Ultrasound; 1998 Aug; 7(3):209-18. PubMed ID: 9700218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of countershock success: a comparison of autoregressive and fast fourier transformed spectral estimators.
    Nowak CN; Fischer G; Neurauter A; Wieser L; Strohmenger HU
    Methods Inf Med; 2009; 48(5):486-92. PubMed ID: 19448883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methodological comparison of the Porges algorithm, fast Fourier transform, and autoregressive spectral analysis for the estimation of heart rate variability in 5-month-old infants.
    Poliakova N; Dionne G; Dubreuil E; Ditto B; Pihl RO; Pérusse D; Tremblay RE; Boivin M
    Psychophysiology; 2014 Jun; 51(6):579-83. PubMed ID: 24611569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients.
    Chemla D; Young J; Badilini F; Maison-Blanche P; Affres H; Lecarpentier Y; Chanson P
    Int J Cardiol; 2005 Oct; 104(3):307-13. PubMed ID: 16186061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral analysis methods for neurological signals.
    Muthuswamy J; Thakor NV
    J Neurosci Methods; 1998 Aug; 83(1):1-14. PubMed ID: 9765047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive, autoregressive spectral estimation for analysis of electrical signals of gastric origin.
    Moraes ER; Toncon LE; Baffa O; Oba-Kunyioshi AS; Wakai R; Leuthold A
    Physiol Meas; 2003 Feb; 24(1):91-106. PubMed ID: 12636189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of laser Doppler flux motion in man: comparison of autoregressive modelling and fast Fourier transformation.
    Weidenhagen R; Wichmann A; Koebe HG; Lauterjung L; Fürst H; Messmer K
    Int J Microcirc Clin Exp; 1996; 16(2):64-73. PubMed ID: 8737709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time series versus Fourier transform methods for estimation of respiratory impedance spectra.
    Davis KA; Lutchen KR
    Int J Biomed Comput; 1991; 27(3-4):261-76. PubMed ID: 2050434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing.
    Wear KA; Wagner RF; Insana MF; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):50-8. PubMed ID: 18263156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical analysis of autoregressive and fast Fourier transform markers of cardiovascular variability in rats and humans.
    Silva GJ; Ushizima MR; Lessa PS; Cardoso L; Drager LF; Atala MM; Consolim-Colombo FM; Lopes HF; Cestari IA; Krieger JE; Krieger EM
    Braz J Med Biol Res; 2009 Apr; 42(4):386-96. PubMed ID: 19330268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoregressive spectral estimation in ultrasonic scatterer size imaging.
    Chaturvedi P; Insana MF
    Ultrason Imaging; 1996 Jan; 18(1):10-24. PubMed ID: 8792560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On AR modelling for MEG spectral estimation, data compression and classification.
    Angelidou A; Strintzis MG; Panas S; Anogianakis G
    Comput Biol Med; 1992 Nov; 22(6):379-87. PubMed ID: 1458850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved gene prediction by principal component analysis based autoregressive Yule-Walker method.
    Roy M; Barman S
    Gene; 2016 Jan; 575(2 Pt 2):488-497. PubMed ID: 26385320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study and assessment of Doppler ultrasound spectral estimation techniques. Part II: Methods and results.
    Vaitkus PJ; Cobbold RS; Johnston KW
    Ultrasound Med Biol; 1988; 14(8):673-88. PubMed ID: 3062863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of FFT- and AR-based sonogram outputs of 20 MHz pulsed Doppler data in real time.
    Güler NF; Kiymik MK; Güler I
    Comput Biol Med; 1995 Jul; 25(4):383-91. PubMed ID: 7497700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doppler angle estimation of pulsatile flows using AR modeling.
    Yeh CK; Li PC
    Ultrason Imaging; 2002 Apr; 24(2):65-80. PubMed ID: 12199419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.