These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 97652)
21. Further studies on the physico-chemical properties of Rhizopus nodosus acid lipase. Muthukumaran N; Dhar SC Ital J Biochem; 1984; 33(2):73-87. PubMed ID: 6735685 [TBL] [Abstract][Full Text] [Related]
22. Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties. Fernández-Lorente G; Palomo JM; Fuentes M; Mateo C; Guisán JM; Fernández-Lafuente R Biotechnol Bioeng; 2003 Apr; 82(2):232-7. PubMed ID: 12584765 [TBL] [Abstract][Full Text] [Related]
23. Effect of Brij 58 on the hydrolysis of methyl butyrate by lipase from Pseudomonas fluorescens. Nakagawa A; Tsujita T; Okuda H J Biochem; 1984 Sep; 96(3):815-20. PubMed ID: 6438076 [TBL] [Abstract][Full Text] [Related]
24. [Exolipases of some Pseudomonas species]. Bashkatova NA; Severina LO Mikrobiologiia; 1978; 47(2):234-40. PubMed ID: 96317 [TBL] [Abstract][Full Text] [Related]
25. Factors screening to statistical experimental design of racemic atenolol kinetic resolution via transesterification reaction in organic solvent using free Pseudomonas fluorescens lipase. Agustian J; Kamaruddin AH; Aboul-Enein HY Chirality; 2017 Jul; 29(7):376-385. PubMed ID: 28439969 [TBL] [Abstract][Full Text] [Related]
26. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Noureddini H; Gao X; Philkana RS Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189 [TBL] [Abstract][Full Text] [Related]
27. Lipase-catalyzed synthesis of sorbitol-fatty acid esters at extremely high substrate concentrations. Kim HJ; Youn SH; Shin CS J Biotechnol; 2006 May; 123(2):174-84. PubMed ID: 16356573 [TBL] [Abstract][Full Text] [Related]
28. Immobilizing enzymes: how to create more suitable biocatalysts. Bornscheuer UT Angew Chem Int Ed Engl; 2003 Jul; 42(29):3336-7. PubMed ID: 12888957 [No Abstract] [Full Text] [Related]
29. Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase. Kim KR; Kwon DY; Yoon SH; Kim WY; Kim KH Protein Expr Purif; 2005 Jan; 39(1):124-9. PubMed ID: 15596368 [TBL] [Abstract][Full Text] [Related]
30. [Conditions of exolipase biosynthesis by the fungus Oospora fragrans]. Ruban EL; Ksandopulo GB; Murzina LP Prikl Biokhim Mikrobiol; 1978; 14(6):849-57. PubMed ID: 34835 [TBL] [Abstract][Full Text] [Related]
31. Optical resolution of (+/-)-1-aryl-1-alkanols using enantioselective transesterification by lipases. Negi S; Umetsu K; Nishijo Y; Kano K; Nakamura K Enantiomer; 2000; 5(1):63-70. PubMed ID: 10763870 [TBL] [Abstract][Full Text] [Related]
32. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Kiziak C; Klein J; Stolz A Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456 [TBL] [Abstract][Full Text] [Related]
33. Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Donnelly C; Murphy CD Biotechnol Lett; 2009 Feb; 31(2):245-50. PubMed ID: 18807226 [TBL] [Abstract][Full Text] [Related]
34. Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Al-Zuhair S Biotechnol Prog; 2005; 21(5):1442-8. PubMed ID: 16209548 [TBL] [Abstract][Full Text] [Related]