These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9765272)

  • 1. Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase.
    Lee SJ; Stull JT
    J Biol Chem; 1998 Oct; 273(42):27430-7. PubMed ID: 9765272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations at lysine 525 of inducible nitric-oxide synthase affect its Ca2+-independent activity.
    Lee SJ; Beckingham K; Stull JT
    J Biol Chem; 2000 Nov; 275(46):36067-72. PubMed ID: 10978319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducible nitric oxide synthase requires both the canonical calmodulin-binding domain and additional sequences in order to bind calmodulin and produce nitric oxide in the absence of free Ca2+.
    Ruan J; Xie Qw; Hutchinson N; Cho H; Wolfe GC; Nathan C
    J Biol Chem; 1996 Sep; 271(37):22679-86. PubMed ID: 8798440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reductase domain of the human inducible nitric oxide synthase is fully active in the absence of bound calmodulin.
    Newton DC; Montgomery HJ; Guillemette JG
    Arch Biochem Biophys; 1998 Nov; 359(2):249-57. PubMed ID: 9808767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
    Newman E; Spratt DE; Mosher J; Cheyne B; Montgomery HJ; Wilson DL; Weinberg JB; Smith SM; Salerno JC; Ghosh DK; Guillemette JG
    J Biol Chem; 2004 Aug; 279(32):33547-57. PubMed ID: 15138276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-independent activity of nitric oxide synthase.
    Lee SJ; Beckingham K; Stull JT
    Biochem Biophys Res Commun; 2001 Jun; 284(2):526-30. PubMed ID: 11394913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer and catalytic activity of nitric oxide synthases. Chimeric constructs of the neuronal, inducible, and endothelial isoforms.
    Nishida CR; Ortiz de Montellano PR
    J Biol Chem; 1998 Mar; 273(10):5566-71. PubMed ID: 9488682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanisms of regulation by calmodulin of nitric oxide synthase].
    Gervaziev IuV; Sokolov NN
    Vopr Med Khim; 1999; 45(3):187-99. PubMed ID: 10432553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of a putative inhibitory element reduces the calcium-dependent calmodulin activation of neuronal nitric-oxide synthase.
    Montgomery HJ; Romanov V; Guillemette JG
    J Biol Chem; 2000 Feb; 275(7):5052-8. PubMed ID: 10671547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase.
    Chen PF; Wu KK
    J Biol Chem; 2003 Dec; 278(52):52392-400. PubMed ID: 14561757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer.
    Daff S; Sagami I; Shimizu T
    J Biol Chem; 1999 Oct; 274(43):30589-95. PubMed ID: 10521442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Ca2+ -dependent and -independent interactions between calmodulin and its binding domain of inducible nitric oxide synthase.
    Yuan T; Vogel HJ; Sutherland C; Walsh MP
    FEBS Lett; 1998 Jul; 431(2):210-4. PubMed ID: 9708904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytically functional flavocytochrome chimeras of P450 BM3 and nitric oxide synthase.
    Fuziwara S; Sagami I; Rozhkova E; Craig D; Noble MA; Munro AW; Chapman SK; Shimizu T
    J Inorg Biochem; 2002 Sep; 91(4):515-26. PubMed ID: 12237219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases.
    Venema RC; Sayegh HS; Kent JD; Harrison DG
    J Biol Chem; 1996 Mar; 271(11):6435-40. PubMed ID: 8626444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer.
    Panda K; Ghosh S; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23349-56. PubMed ID: 11325964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-binding sites of calmodulin and electron transfer by inducible nitric oxide synthase.
    Gribovskaja I; Brownlow KC; Dennis SJ; Rosko AJ; Marletta MA; Stevens-Truss R
    Biochemistry; 2005 May; 44(20):7593-601. PubMed ID: 15896003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of electron transfer in neuronal NO synthase.
    Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T
    Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity.
    Knudsen GM; Nishida CR; Mooney SD; Ortiz de Montellano PR
    J Biol Chem; 2003 Aug; 278(34):31814-24. PubMed ID: 12805387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin-dependent regulation of mammalian nitric oxide synthase.
    Daff S
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):502-5. PubMed ID: 12773144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.