BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9765508)

  • 1. Chronic morphine augments G(beta)(gamma)/Gs(alpha) stimulation of adenylyl cyclase: relevance to opioid tolerance.
    Chakrabarti S; Rivera M; Yan SZ; Tang WJ; Gintzler AR
    Mol Pharmacol; 1998 Oct; 54(4):655-62. PubMed ID: 9765508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gbetagamma that interacts with adenylyl cyclase in opioid tolerance originates from a Gs protein.
    Wang HY; Burns LH
    J Neurobiol; 2006 Oct; 66(12):1302-10. PubMed ID: 16967511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic morphine acts via a protein kinase Cgamma-G(beta)-adenylyl cyclase complex to augment phosphorylation of G(beta) and G(betagamma) stimulatory adenylyl cyclase signaling.
    Chakrabarti S; Regec A; Gintzler AR
    Brain Res Mol Brain Res; 2005 Jul; 138(1):94-103. PubMed ID: 15908039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling.
    Wang HY; Friedman E; Olmstead MC; Burns LH
    Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual effects of DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for mu-opioid receptor Gs coupling.
    Szücs M; Boda K; Gintzler AR
    J Pharmacol Exp Ther; 2004 Jul; 310(1):256-62. PubMed ID: 14996951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenylyl cyclase supersensitivity in opioid-withdrawn NG108-15 hybrid cells requires Gs but is not mediated by the Gsalpha subunit.
    Ammer H; Schulz R
    J Pharmacol Exp Ther; 1998 Aug; 286(2):855-62. PubMed ID: 9694942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/dependence.
    Chakrabarti S; Wang L; Tang WJ; Gintzler AR
    Mol Pharmacol; 1998 Dec; 54(6):949-53. PubMed ID: 9855621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic morphine treatment increases stimulatory beta-2 adrenoceptor signaling in A431 cells stably expressing the mu opioid receptor.
    Ammer H; Schulz R
    J Pharmacol Exp Ther; 1997 Jan; 280(1):512-20. PubMed ID: 8996236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of adenylyl cyclase-related signaling sequelae after long-term morphine treatment.
    Shy M; Chakrabarti S; Gintzler AR
    Mol Pharmacol; 2008 Mar; 73(3):868-79. PubMed ID: 18045853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid peptide receptor studies. 17. Attenuation of chronic morphine effects after antisense oligodeoxynucleotide knock-down of RGS9 protein in cells expressing the cloned Mu opioid receptor.
    Xu H; Wang X; Wang J; Rothman RB
    Synapse; 2004 Jun; 52(3):209-17. PubMed ID: 15065220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenylyl cyclase type II activity is regulated by two different mechanisms: implications for acute and chronic opioid exposure.
    Schallmach E; Steiner D; Vogel Z
    Neuropharmacology; 2006 Jun; 50(8):998-1005. PubMed ID: 16545401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supersensitivity to mu-opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant Galpha protein subunits.
    Mostany R; Díaz A; Valdizán EM; Rodríguez-Muñoz M; Garzón J; Hurlé MA
    Neuropharmacology; 2008 May; 54(6):989-97. PubMed ID: 18384820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical demonstration of mu-opioid receptor association with Gsalpha: enhancement following morphine exposure.
    Chakrabarti S; Regec A; Gintzler AR
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):217-24. PubMed ID: 15857684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opioid peptide receptor studies. 16. Chronic morphine alters G-protein function in cells expressing the cloned mu opioid receptor.
    Xu H; Lu YF; Rothman RB
    Synapse; 2003 Jan; 47(1):1-9. PubMed ID: 12422367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic morphine induces the concomitant phosphorylation and altered association of multiple signaling proteins: a novel mechanism for modulating cell signaling.
    Chakrabarti S; Oppermann M; Gintzler AR
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4209-14. PubMed ID: 11274443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules.
    Gintzler AR; Chakrabarti S
    Life Sci; 2006 Jul; 79(8):717-22. PubMed ID: 16581089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effect of chronic morphine on mRNA encoding adenylyl cyclase isoforms: relevance to physiological sequela of tolerance/dependence.
    Rivera M; Gintzler AR
    Brain Res Mol Brain Res; 1998 Feb; 54(1):165-9. PubMed ID: 9526073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous regulator of g protein signaling proteins reduce {mu}-opioid receptor desensitization and down-regulation and adenylyl cyclase tolerance in C6 cells.
    Clark MJ; Traynor JR
    J Pharmacol Exp Ther; 2005 Feb; 312(2):809-15. PubMed ID: 15383633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits.
    Steiner D; Saya D; Schallmach E; Simonds WF; Vogel Z
    Cell Signal; 2006 Jan; 18(1):62-8. PubMed ID: 15925485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for opioid-induced release of glutamate in guinea pig longitudinal muscle-myenteric plexus strip.
    Donnerer J; Liebmann I
    Neurosci Lett; 2009 Sep; 462(2):118-20. PubMed ID: 19576952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.