These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9765531)

  • 1. Overexpression of an Arabidopsis cDNA encoding a sterol-C24(1)-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction.
    Schaller H; Bouvier-Navé P; Benveniste P
    Plant Physiol; 1998 Oct; 118(2):461-9. PubMed ID: 9765531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant sterol-C24-methyl transferases: different profiles of tobacco transformed with SMT1 or SMT2.
    Schaeffer A; Bouvier-Navé P; Benveniste P; Schaller H
    Lipids; 2000 Mar; 35(3):263-9. PubMed ID: 10783003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterol composition and growth of transgenic tobacco plants expressing type-1 and type-2 sterol methyltransferases.
    Sitbon F; Jonsson L
    Planta; 2001 Mar; 212(4):568-72. PubMed ID: 11525513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1.
    Schaeffer A; Bronner R; Benveniste P; Schaller H
    Plant J; 2001 Mar; 25(6):605-15. PubMed ID: 11319028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed.
    Holmberg N; Harker M; Gibbard CL; Wallace AD; Clayton JC; Rawlins S; Hellyer A; Safford R
    Plant Physiol; 2002 Sep; 130(1):303-11. PubMed ID: 12226510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis.
    Bouvier-Navé P; Husselstein T; Desprez T; Benveniste P
    Eur J Biochem; 1997 Jun; 246(2):518-29. PubMed ID: 9208946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant sterol biosynthesis.
    Bouvier-Navé P; Husselstein T; Benveniste P
    Eur J Biochem; 1998 Aug; 256(1):88-96. PubMed ID: 9746350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aphid growth and reproduction on plants with altered sterol profiles: Novel insights using Arabidopsis mutant and overexpression lines.
    Chen IW; Grebenok RJ; Schaller H; Zhu-Salzman K; Behmer ST
    J Insect Physiol; 2020; 123():104054. PubMed ID: 32275907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification of sterol methyltransferase enzymes in plants and a role for β-sitosterol in oriented cell plate formation and polarized growth.
    Nakamoto M; Schmit AC; Heintz D; Schaller H; Ohta D
    Plant J; 2015 Dec; 84(5):860-74. PubMed ID: 26426526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
    Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK
    Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis.
    Neelakandan AK; Nguyen HT; Kumar R; Tran LS; Guttikonda SK; Quach TN; Aldrich DL; Nes WD; Nguyen HT
    Plant Mol Biol; 2010 Nov; 74(4-5):503-18. PubMed ID: 20865301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA.
    Arnqvist L; Dutta PC; Jonsson L; Sitbon F
    Plant Physiol; 2003 Apr; 131(4):1792-9. PubMed ID: 12692338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis.
    Neelakandan AK; Song Z; Wang J; Richards MH; Wu X; Valliyodan B; Nguyen HT; Nes WD
    Phytochemistry; 2009 Dec; 70(17-18):1982-98. PubMed ID: 19818974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterol methyltransferase 1 controls the level of cholesterol in plants.
    Diener AC; Li H; Zhou W; Whoriskey WJ; Nes WD; Fink GR
    Plant Cell; 2000 Jun; 12(6):853-70. PubMed ID: 10852933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Saccharomyces cerevisiae with a cDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24-ethyl sterols.
    Husselstein T; Gachotte D; Desprez T; Bard M; Benveniste P
    FEBS Lett; 1996 Feb; 381(1-2):87-92. PubMed ID: 8641446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Mannock DA; Benesch MG; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2015 Aug; 1848(8):1629-38. PubMed ID: 25911208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of CYP710A1 and CYP710A4 in transgenic Arabidopsis plants increases the level of stigmasterol at the expense of sitosterol.
    Arnqvist L; Persson M; Jonsson L; Dutta PC; Sitbon F
    Planta; 2008 Jan; 227(2):309-17. PubMed ID: 17909855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase and C24-sterol methyltransferase type 1 in transgenic tobacco enhances carbon flux towards end-product sterols.
    Holmberg N; Harker M; Wallace AD; Clayton JC; Gibbard CL; Safford R
    Plant J; 2003 Oct; 36(1):12-20. PubMed ID: 12974807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14alpha-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L.
    Burger C; Rondet S; Benveniste P; Schaller H
    J Exp Bot; 2003 Jul; 54(388):1675-83. PubMed ID: 12810855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats.
    Ikeda I; Nakagiri H; Sugano M; Ohara S; Hamada T; Nonaka M; Imaizumi K
    Metabolism; 2001 Nov; 50(11):1361-8. PubMed ID: 11699058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.