These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 9765816)
1. Further genetic analysis of the C-terminal external loop region in Escherichia coli maltoporin. Klebba PE; Newton SM; Charbit A; Michel V; Perrin D; Hofnung M Res Microbiol; 1997 Jun; 148(5):375-87. PubMed ID: 9765816 [TBL] [Abstract][Full Text] [Related]
2. Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium. Jordy M; Andersen C; Schülein K; Ferenci T; Benz R J Mol Biol; 1996 Jun; 259(4):666-78. PubMed ID: 8683573 [TBL] [Abstract][Full Text] [Related]
3. A cluster of charged and aromatic residues in the C-terminal portion of maltoporin participates in sugar binding and uptake. Charbit A; Wang J; Michel V; Hofnung M Mol Gen Genet; 1998 Nov; 260(2-3):185-92. PubMed ID: 9862470 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: effect on ion and maltopentaose transport. Denker K; Orlik F; Schiffler B; Benz R J Mol Biol; 2005 Sep; 352(3):534-50. PubMed ID: 16095613 [TBL] [Abstract][Full Text] [Related]
5. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Andersen C; Bachmeyer C; Täuber H; Benz R; Wang J; Michel V; Newton SM; Hofnung M; Charbit A Mol Microbiol; 1999 May; 32(4):851-67. PubMed ID: 10361287 [TBL] [Abstract][Full Text] [Related]
6. Site-directed mutagenesis within the central constriction site of ScrY (sucroseporin): effect on ion transport and comparison of maltooligosaccharide binding to LamB of Escherichia coli. Kim BH; Andersen C; Kreth J; Ulmke C; Schmid K; Benz R J Membr Biol; 2002 Jun; 187(3):239-53. PubMed ID: 12163981 [TBL] [Abstract][Full Text] [Related]
7. In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin. Charbit A; Andersen C; Wang J; Schiffler B; Michel V; Benz R; Hofnung M Mol Microbiol; 2000 Feb; 35(4):777-90. PubMed ID: 10692155 [TBL] [Abstract][Full Text] [Related]
8. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of the viral tail protein gpJ to LamB (Maltoporin). Berkane E; Orlik F; Stegmeier JF; Charbit A; Winterhalter M; Benz R Biochemistry; 2006 Feb; 45(8):2708-20. PubMed ID: 16489764 [TBL] [Abstract][Full Text] [Related]
9. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934 [TBL] [Abstract][Full Text] [Related]
10. Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure. Heine HG; Francis G; Lee KS; Ferenci T J Bacteriol; 1988 Apr; 170(4):1730-8. PubMed ID: 2832377 [TBL] [Abstract][Full Text] [Related]
11. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. Klebba PE; Hofnung M; Charbit A EMBO J; 1994 Oct; 13(19):4670-5. PubMed ID: 7925308 [TBL] [Abstract][Full Text] [Related]
12. The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage. German GJ; Misra R J Mol Biol; 2001 May; 308(4):579-85. PubMed ID: 11350161 [TBL] [Abstract][Full Text] [Related]
13. [Escherichia coli phage receptors. Minor porins and proteins participating in the specific transport as phage receptors]. Likhacheva NA; Sineokiĭ SP Mol Gen Mikrobiol Virusol; 1989 Dec; (12):3-12. PubMed ID: 2561376 [TBL] [Abstract][Full Text] [Related]
14. Molecular and functional characterisation of the Serratia marcescens outer membrane protein Omp1. Ruiz N; Maier E; Andersen C; Benz R; Viñas M Biophys Chem; 2004 May; 109(2):215-27. PubMed ID: 15110941 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Schirmer T; Keller TA; Wang YF; Rosenbusch JP Science; 1995 Jan; 267(5197):512-4. PubMed ID: 7824948 [TBL] [Abstract][Full Text] [Related]
16. Maltose transport and starch binding in phage-resistant point mutants of maltoporin. Functional and topological implications. Charbit A; Gehring K; Nikaido H; Ferenci T; Hofnung M J Mol Biol; 1988 Jun; 201(3):487-96. PubMed ID: 2971116 [TBL] [Abstract][Full Text] [Related]
17. Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. Meyer JE; Hofnung M; Schulz GE J Mol Biol; 1997 Mar; 266(4):761-75. PubMed ID: 9102468 [TBL] [Abstract][Full Text] [Related]
18. Mutations in gene lamB: studies on structure and topology of an E. coli outer membrane protein. Marchal C; Clement JM; Hofnung M Tokai J Exp Clin Med; 1982; 7 Suppl():165-70. PubMed ID: 6225226 [TBL] [Abstract][Full Text] [Related]
19. Determinants of receptor specificity of coliphages of the T4 family. A chaperone alters the host range. Hashemolhosseini S; Montag D; Krämer L; Henning U J Mol Biol; 1994 Aug; 241(4):524-33. PubMed ID: 8057378 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics. Orlik F; Andersen C; Benz R Biophys J; 2002 Jul; 83(1):309-21. PubMed ID: 12080122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]