These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9765838)

  • 1. Cell-based biosensors for environmental monitoring with special reference to heavy metal analysis.
    Mattiasson B
    Res Microbiol; 1997; 148(6):533. PubMed ID: 9765838
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial metal-lux biosensors for a rapid determination of the heavy metal bioavailability and toxicity in solid samples.
    Corbisier P
    Res Microbiol; 1997; 148(6):534-6. PubMed ID: 9765839
    [No Abstract]   [Full Text] [Related]  

  • 3. Heavy metal resistance of some thermophiles: potential use of alpha-amylase from Anoxybacillus amylolyticus as a microbial enzymatic bioassay.
    Poli A; Salerno A; Laezza G; di Donato P; Dumontet S; Nicolaus B
    Res Microbiol; 2009 Mar; 160(2):99-106. PubMed ID: 19070660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples.
    Chouteau C; Dzyadevych S; Durrieu C; Chovelon JM
    Biosens Bioelectron; 2005 Aug; 21(2):273-81. PubMed ID: 16023954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making bio-sense of toxicity: new developments in whole-cell biosensors.
    Sørensen SJ; Burmølle M; Hansen LH
    Curr Opin Biotechnol; 2006 Feb; 17(1):11-6. PubMed ID: 16376540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors.
    Liao VH; Chien MT; Tseng YY; Ou KL
    Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor.
    Tsai HC; Doong RA
    Biosens Bioelectron; 2005 Mar; 20(9):1796-804. PubMed ID: 15681196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation.
    Malitesta C; Guascito MR
    Biosens Bioelectron; 2005 Feb; 20(8):1643-7. PubMed ID: 15626621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent biosensing developments in environmental security.
    Wanekaya AK; Chen W; Mulchandani A
    J Environ Monit; 2008 Jun; 10(6):703-12. PubMed ID: 18528536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of molecular monitoring methods for the evaluation of the activity of sulfate- and metal reducing bacteria (SMRBS) as an indication of the in situ immobilisation of heavy metals and metalloids.
    Geets J; Vangronsveld J; Borremans B; Diels L; van der Lelie D
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):41-8. PubMed ID: 15954561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Techniques help monitor microbial remediation.
    Petkewich R
    Environ Sci Technol; 2005 Oct; 39(19):395A-396A. PubMed ID: 16245797
    [No Abstract]   [Full Text] [Related]  

  • 13. Linking biosensor responses to Cd, Cu and Zn partitioning in soils.
    Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI
    Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].
    Hou QH; Ma AS; Zhuang XL; Zhuang GQ
    Huan Jing Ke Xue; 2013 Jan; 34(1):347-56. PubMed ID: 23487961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The evaluation of the total toxicity of heavy metals based on the luminescence bacterial test].
    Khripach LV; Revazova IuA; Khodzhaian AB
    Gig Sanit; 1998; (4):67-72. PubMed ID: 9721511
    [No Abstract]   [Full Text] [Related]  

  • 16. Monitoring of microbial metal transformations in the environment.
    Wiatrowski HA; Barkay T
    Curr Opin Biotechnol; 2005 Jun; 16(3):261-8. PubMed ID: 15961026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial sensors based on Acidithiobacillus ferrooxidans Part I. Fe2+ and S2O32- determination.
    Zlatev R; Magnin JP; Ozil P; Stoytcheva M
    Biosens Bioelectron; 2006 Feb; 21(8):1493-500. PubMed ID: 16095897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands.
    Batzias AF; Siontorou CG
    J Hazard Mater; 2008 Oct; 158(2-3):340-58. PubMed ID: 18325663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical algal biosensor using alkaline phosphatase for determination of heavy metals.
    Durrieu C; Tran-Minh C
    Ecotoxicol Environ Saf; 2002 Mar; 51(3):206-9. PubMed ID: 11971642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amperometric biosensor based on denatured DNA for the study of heavy metals complexing with DNA and their determination in biological, water and food samples.
    Babkina SS; Ulakhovich NA
    Bioelectrochemistry; 2004 Jun; 63(1-2):261-5. PubMed ID: 15110284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.