These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 9765839)

  • 41. Heavy metal contamination of soils along roadsides in Port Harcourt metropolis, Nigeria.
    Ideriah TJ; Braide SA; Izonfuo WA; Adiukwu PU
    Bull Environ Contam Toxicol; 2004 Jul; 73(1):67-70. PubMed ID: 15386073
    [No Abstract]   [Full Text] [Related]  

  • 42. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.
    Kumar Sharma R; Agrawal M; Marshall F
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction.
    Mertens J; Luyssaert S; Verheyen K
    Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of the quality of sewage effluents from dry weather flow channel, Calcutta.
    Adhikari S; Gupta SK
    Indian J Environ Health; 2002 Jul; 44(3):197-202. PubMed ID: 14503443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Issues underlying use of biosensors to measure metal bioavailability.
    Rensing C; Maier RM
    Ecotoxicol Environ Saf; 2003 Sep; 56(1):140-7. PubMed ID: 12915147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic heavy metal immunoassay based on absorbance measurement.
    Date Y; Terakado S; Sasaki K; Aota A; Matsumoto N; Shiku H; Ino K; Watanabe Y; Matsue T; Ohmura N
    Biosens Bioelectron; 2012 Mar; 33(1):106-12. PubMed ID: 22244671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].
    Hou QH; Ma AS; Zhuang XL; Zhuang GQ
    Huan Jing Ke Xue; 2013 Jan; 34(1):347-56. PubMed ID: 23487961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heavy metal toxicity monitoring in sediments of Jinhae bay, Korea.
    Kong I; Lee C; Kwon Y
    Bull Environ Contam Toxicol; 1998 Oct; 61(4):505-11. PubMed ID: 9811956
    [No Abstract]   [Full Text] [Related]  

  • 49. Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications.
    Collard JM; Corbisier P; Diels L; Dong Q; Jeanthon C; Mergeay M; Taghavi S; van der Lelie D; Wilmotte A; Wuertz S
    FEMS Microbiol Rev; 1994 Aug; 14(4):405-14. PubMed ID: 7917428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Specific heavy metal/metalloid sensors: current state and perspectives.
    Kim H; Jang G; Yoon Y
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):907-914. PubMed ID: 31832713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors.
    Riether KB; Dollard MA; Billard P
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):712-6. PubMed ID: 11778883
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Online monitoring of heavy metal-related toxicity using flow-through and floating microbial fuel cell biosensors.
    Adekunle A; Rickwood C; Tartakovsky B
    Environ Monit Assess; 2019 Dec; 192(1):52. PubMed ID: 31848773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water.
    Yang Y; Fang Z; Yu YY; Wang YZ; Naraginti S; Yong YC
    Water Sci Technol; 2019 Mar; 79(6):1071-1080. PubMed ID: 31070587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review.
    Saidur MR; Aziz AR; Basirun WJ
    Biosens Bioelectron; 2017 Apr; 90():125-139. PubMed ID: 27886599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The evaluation of the total toxicity of heavy metals based on the luminescence bacterial test].
    Khripach LV; Revazova IuA; Khodzhaian AB
    Gig Sanit; 1998; (4):67-72. PubMed ID: 9721511
    [No Abstract]   [Full Text] [Related]  

  • 56. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals.
    Farzin L; Shamsipur M; Sheibani S
    Talanta; 2017 Nov; 174():619-627. PubMed ID: 28738631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic circuits in microbial biosensors for heavy metal detection in soil and water.
    Mathur S; Singh D; Ranjan R
    Biochem Biophys Res Commun; 2023 Apr; 652():131-137. PubMed ID: 36842324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila.
    Amaro F; Turkewitz AP; Martín-González A; Gutiérrez JC
    Microb Biotechnol; 2011 Jul; 4(4):513-22. PubMed ID: 21366892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosensors for the Detection of Environmental and Urban Pollutions.
    Hashemi Goradel N; Mirzaei H; Sahebkar A; Poursadeghiyan M; Masoudifar A; Malekshahi ZV; Negahdari B
    J Cell Biochem; 2018 Jan; 119(1):207-212. PubMed ID: 28383805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial whole-cell biosensors for the detection of contaminants in water and soils.
    Wang Y; Zhang D; Davison PA; Huang WE
    Methods Mol Biol; 2014; 1096():155-68. PubMed ID: 24515368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.