These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9765840)

  • 1. Alcaligenes eutrophus as a model system for bacterial interactions with heavy metals in the environment.
    Taghavi S; Mergeay M; Nies D; van der Lelie D
    Res Microbiol; 1997; 148(6):536-51. PubMed ID: 9765840
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial metal-lux biosensors for a rapid determination of the heavy metal bioavailability and toxicity in solid samples.
    Corbisier P
    Res Microbiol; 1997; 148(6):534-6. PubMed ID: 9765839
    [No Abstract]   [Full Text] [Related]  

  • 3. Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality.
    Taghavi S; Mergeay M; van der Lelie D
    Plasmid; 1997; 37(1):22-34. PubMed ID: 9073579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains.
    Springael D; Diels L; Hooyberghs L; Kreps S; Mergeay M
    Appl Environ Microbiol; 1993 Jan; 59(1):334-9. PubMed ID: 8439161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals.
    Diels L; Dong Q; van der Lelie D; Baeyens W; Mergeay M
    J Ind Microbiol; 1995 Feb; 14(2):142-53. PubMed ID: 7766206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer and expression of PCB-degradative genes into heavy metal resistant Alcaligenes eutrophus strains.
    Springael D; Diels L; Mergeay M
    Biodegradation; 1994 Dec; 5(3-4):343-57. PubMed ID: 7765842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications.
    Collard JM; Corbisier P; Diels L; Dong Q; Jeanthon C; Mergeay M; Taghavi S; van der Lelie D; Wilmotte A; Wuertz S
    FEMS Microbiol Rev; 1994 Aug; 14(4):405-14. PubMed ID: 7917428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments.
    Taghavi S; van der Lelie D; Mergeay M
    Appl Environ Microbiol; 1994 Oct; 60(10):3585-91. PubMed ID: 7986037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus.
    van der Lelie D; Schwuchow T; Schwidetzky U; Wuertz S; Baeyens W; Mergeay M; Nies DH
    Mol Microbiol; 1997 Feb; 23(3):493-503. PubMed ID: 9044283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mobile genetic elements for microbial degradation of environmental pollutants].
    Tsuda M; Sota M
    Tanpakushitsu Kakusan Koso; 2005 Oct; 50(12):1527-34. PubMed ID: 16218452
    [No Abstract]   [Full Text] [Related]  

  • 11. The use of an Alcaligenes eutrophus biofilm in a membrane bioreactor for heavy metal recovery.
    Van Roy S; Peys K; Dresselaers T; Diels L
    Res Microbiol; 1997; 148(6):526-8. PubMed ID: 9765835
    [No Abstract]   [Full Text] [Related]  

  • 12. [Search of heavy metals biosorbents among yeasts of different taxonomic groups].
    Lozovaia OG; Kasatkina TP; Podgorskiĭ VS
    Mikrobiol Z; 2004; 66(2):92-101. PubMed ID: 15208860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals.
    Monchy S; Benotmane MA; Janssen P; Vallaeys T; Taghavi S; van der Lelie D; Mergeay M
    J Bacteriol; 2007 Oct; 189(20):7417-25. PubMed ID: 17675385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways.
    Trefault N; De la Iglesia R; Molina AM; Manzano M; Ledger T; Pérez-Pantoja D; Sánchez MA; Stuardo M; González B
    Environ Microbiol; 2004 Jul; 6(7):655-68. PubMed ID: 15186344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of heavy metals by Saccharomyces cerevisiae: a review.
    Wang J; Chen C
    Biotechnol Adv; 2006; 24(5):427-51. PubMed ID: 16737792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbes in heavy metal remediation.
    Rajendran P; Muthukrishnan J; Gunasekaran P
    Indian J Exp Biol; 2003 Sep; 41(9):935-44. PubMed ID: 15242287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome mapping in Alcaligenes eutrophus CH34.
    Sadouk A; Mergeay M
    Mol Gen Genet; 1993 Aug; 240(2):181-7. PubMed ID: 8355652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace metal concentrations in the Little Penguin (Eudyptula minor) from Southern Victoria, Australia.
    Choong B; Allinson G; Salzman S; Overeem R
    Bull Environ Contam Toxicol; 2007 Jan; 78(1):53-7. PubMed ID: 17375253
    [No Abstract]   [Full Text] [Related]  

  • 19. Delivery of a genetically marked Alcaligenes sp. to the glassy-winged sharpshooter for use in a paratransgenic control strategy.
    Bextine B; Lauzon C; Potter S; Lampe D; Miller TA
    Curr Microbiol; 2004 May; 48(5):327-31. PubMed ID: 15060727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tn611 transposon mutagenesis in Mycobacterium smegmatis using a temperature-sensitive delivery system.
    Pérez E; Gavigan JA; Otal I; Guilhot C; Pelicic V; Giquel B; Martín C
    Methods Mol Biol; 1998; 101():187-98. PubMed ID: 9921478
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.