These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9765891)

  • 1. Protein engineering of the photoreaction centre from Rhodobacter sphaeroides.
    Ridge JP; Goodwin MG; Jones MR
    Biochem Soc Trans; 1998 Aug; 26(3):422-7. PubMed ID: 9765891
    [No Abstract]   [Full Text] [Related]  

  • 2. Modification of the binding pocket for the QA ubiquinone in the reaction centre from Rhodobacter sphaeroides.
    Ridge JP; Goodwin MG; van Brederode M; van Grondelle R; Jones MR
    Biochem Soc Trans; 1998 Aug; 26(3):S209. PubMed ID: 9765928
    [No Abstract]   [Full Text] [Related]  

  • 3. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization.
    Farchaus JW; Wachtveitl J; Mathis P; Oesterhelt D
    Biochemistry; 1993 Oct; 32(40):10885-93. PubMed ID: 8399238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. B-branch electron transfer in the photosynthetic reaction center of a Rhodobacter sphaeroides quadruple mutant. Q- and W-band electron paramagnetic resonance studies of triplet and radical-pair cofactor states.
    Marchanka A; Savitsky A; Lubitz W; Möbius K; van Gastel M
    J Phys Chem B; 2010 Nov; 114(45):14364-72. PubMed ID: 20345158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiation of proton transfer function by electrostatic interactions in photosynthetic reaction centers from Rhodobacter sphaeroides: First results from site-directed mutation of the H subunit.
    Takahashi E; Wraight CA
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2640-5. PubMed ID: 8610094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer in Rhodobacter sphaeroides reaction centers containing Zn-bacteriochlorophylls: a hole-burning study.
    Neupane B; Jaschke P; Saer R; Beatty JT; Reppert M; Jankowiak R
    J Phys Chem B; 2012 Mar; 116(10):3457-66. PubMed ID: 22324747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the QB binding site.
    Takahashi E; Wraight CA
    Biochemistry; 1992 Jan; 31(3):855-66. PubMed ID: 1731944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of specific mutations of tyrosine-(M)210 on the primary photosynthetic electron-transfer process in Rhodobacter sphaeroides.
    Nagarajan V; Parson WW; Gaul D; Schenck C
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7888-92. PubMed ID: 2236006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton release upon oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides.
    Kálmán L; Williams JC; Allen JP
    FEBS Lett; 2003 Jun; 545(2-3):193-8. PubMed ID: 12804774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides.
    Finkele U; Lauterwasser C; Zinth W; Gray KA; Oesterhelt D
    Biochemistry; 1990 Sep; 29(37):8517-21. PubMed ID: 2271535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides.
    Lin X; Murchison HA; Nagarajan V; Parson WW; Allen JP; Williams JC
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10265-9. PubMed ID: 7937938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of electron transfer in Rhodobacter sphaeroides reaction center.
    Hiyama M; Koga N
    Photochem Photobiol; 2011; 87(6):1297-307. PubMed ID: 21895666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposing structural changes in two symmetrical polypeptides bring about opposing changes to the thermal stability of a complex integral membrane protein.
    Holden-Dye K; Crouch LI; Williams CM; Bone RA; Cheng J; Böhles F; Heathcote P; Jones MR
    Arch Biochem Biophys; 2011 Jan; 505(2):160-70. PubMed ID: 20933495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of M subunit Thr222 and Trp252 on quinone binding and electron transfer in Rhodobacter sphaeroides reaction centres.
    Stilz HU; Finkele U; Holzapfel W; Lauterwasser C; Zinth W; Oesterhelt D
    Eur J Biochem; 1994 Jul; 223(1):233-42. PubMed ID: 8033896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: influence of the charge separation rate and consequences for the rate-limiting step in the light-harvesting process.
    Beekman LM; van Mourik F; Jones MR; Visser HM; Hunter CN; van Grondelle R
    Biochemistry; 1994 Mar; 33(11):3143-7. PubMed ID: 8136347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center.
    Katona G; Snijder A; Gourdon P; Andréasson U; Hansson O; Andréasson LE; Neutze R
    Nat Struct Mol Biol; 2005 Jul; 12(7):630-1. PubMed ID: 15937492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of proton transfer inhibition by Cd(2+) binding to bacterial reaction centers: determination of the pK(A) of functionally important histidine residues.
    Paddock ML; Sagle L; Tehrani A; Beatty JT; Feher G; Okamura MY
    Biochemistry; 2003 Aug; 42(32):9626-32. PubMed ID: 12911304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.
    Taguchi AT; Mattis AJ; O'Malley PJ; Dikanov SA; Wraight CA
    Biochemistry; 2013 Oct; 52(41):7164-6. PubMed ID: 24079813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton transfer pathways and mechanism in bacterial reaction centers.
    Paddock ML; Feher G; Okamura MY
    FEBS Lett; 2003 Nov; 555(1):45-50. PubMed ID: 14630317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.