These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 9767105)
1. Ionic channels formed by a primary amphipathic peptide containing a signal peptide and a nuclear localization sequence. Chaloin L; Dé E; Charnet P; Molle G; Heitz F Biochim Biophys Acta; 1998 Oct; 1375(1-2):52-60. PubMed ID: 9767105 [TBL] [Abstract][Full Text] [Related]
2. Conformation and ion channel properties of a five-helix Bundle protein. Dé E; Chaloin L; Heitz A; Méry J; Molle G; Heitz F J Pept Sci; 2001 Jan; 7(1):41-9. PubMed ID: 11245204 [TBL] [Abstract][Full Text] [Related]
3. Formation of ion channels in planar lipid bilayer membranes by synthetic basic peptides. Anzai K; Hamasuna M; Kadono H; Lee S; Aoyagi H; Kirino Y Biochim Biophys Acta; 1991 May; 1064(2):256-66. PubMed ID: 1709812 [TBL] [Abstract][Full Text] [Related]
4. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Deshayes S; Plénat T; Charnet P; Divita G; Molle G; Heitz F Biochim Biophys Acta; 2006 Nov; 1758(11):1846-51. PubMed ID: 17011511 [TBL] [Abstract][Full Text] [Related]
5. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels. Cosette P; Rebuffat S; Bodo B; Molle G Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of amphipathic 3(10)-helical peptides and their interactions with phospholipid bilayers and ion channel formation. Iwata T; Lee S; Oishi O; Aoyagi H; Ohno M; Anzai K; Kirino Y; Sugihara G J Biol Chem; 1994 Feb; 269(7):4928-33. PubMed ID: 7508930 [TBL] [Abstract][Full Text] [Related]
7. The primary structure of chicken muscle acylphosphatase isozyme Ch2. Ohba Y; Minowa O; Mizuno Y; Shiokawa H J Biochem; 1987 Nov; 102(5):1221-9. PubMed ID: 2830254 [TBL] [Abstract][Full Text] [Related]
8. Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity of basic amphipathic alpha-helical model peptides of various chain lengths. Agawa Y; Lee S; Ono S; Aoyagi H; Ohno M; Taniguchi T; Anzai K; Kirino Y J Biol Chem; 1991 Oct; 266(30):20218-22. PubMed ID: 1718959 [TBL] [Abstract][Full Text] [Related]
9. Channel protein engineering: synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers. Oiki S; Danho W; Montal M Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2393-7. PubMed ID: 2451248 [TBL] [Abstract][Full Text] [Related]
10. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy. Sudheendra US; Bechinger B Biochemistry; 2005 Sep; 44(36):12120-7. PubMed ID: 16142910 [TBL] [Abstract][Full Text] [Related]
11. Effect of salts on conformational change of basic amphipathic peptides from beta-structure to alpha-helix in the presence of phospholipid liposomes and their channel-forming ability. Lee S; Iwata T; Oyagi H; Aoyagi H; Ohno M; Anzai K; Kirino Y; Sugihara G Biochim Biophys Acta; 1993 Sep; 1151(1):76-82. PubMed ID: 7689337 [TBL] [Abstract][Full Text] [Related]
12. Two mode ion channels induced by interaction of acidic amphipathic alpha-helical peptides with lipid bilayers. Lee S; Tanaka T; Anzai K; Kirino Y; Aoyagi H; Sugihara G Biochim Biophys Acta; 1994 Apr; 1191(1):181-9. PubMed ID: 7512383 [TBL] [Abstract][Full Text] [Related]
13. The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Brock CJ; Tanner MJ; Kempf C Biochem J; 1983 Sep; 213(3):577-86. PubMed ID: 6615451 [TBL] [Abstract][Full Text] [Related]
14. M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Oiki S; Danho W; Madison V; Montal M Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8703-7. PubMed ID: 2460876 [TBL] [Abstract][Full Text] [Related]
15. Side chain effect on ion channel characters of Aib rich peptides. Hara T; Kodama H; Higashimoto Y; Yamaguchi H; Jelokhani-Niaraki M; Ehara T; Kondo M J Biochem; 2001 Dec; 130(6):749-55. PubMed ID: 11726274 [TBL] [Abstract][Full Text] [Related]
17. Structure-function relationship of model Aib-containing peptides as ion transfer intermembrane templates. Higashimoto Y; Kodama H; Jelokhani-Niaraki M; Kato F; Kondo M J Biochem; 1999 Apr; 125(4):705-12. PubMed ID: 10101283 [TBL] [Abstract][Full Text] [Related]
18. The primary structure of chicken muscle acylphosphatase isozyme Ch1. Minowa O; Ohba Y; Mizuno Y; Shiokawa H J Biochem; 1987 Nov; 102(5):1213-20. PubMed ID: 2830253 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of the lipid bilayer of model membranes by synthetic signal peptides. Nagaraj R; Joseph M; Reddy GL Biochim Biophys Acta; 1987 Oct; 903(3):465-72. PubMed ID: 3311164 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial peptides derived from pepsinogens in the stomach of the bullfrog, Rana catesbeiana. Minn I; Kim HS; Kim SC Biochim Biophys Acta; 1998 Jul; 1407(1):31-9. PubMed ID: 9639668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]