These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9767176)

  • 1. Sigmoidal compression rate-dependence of inert gas narcotic potency in rats: implication for lipid vs. protein theories of inert gas action in the central nervous system.
    Abraini JH; Rostain JC; Kriem B
    Brain Res; 1998 Oct; 808(2):300-4. PubMed ID: 9767176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sigmoidal admission rate-dependence of toluene narcotic potency in rats: comparison with nitrous oxide.
    Abraini JH; Campo P; Kriem B; Rostain JC; Vincent A
    Neurosci Lett; 1999 Nov; 275(3):211-4. PubMed ID: 10580712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide.
    Abraini JH; Kriem B; Balon N; Rostain JC; Risso JJ
    Anesth Analg; 2003 Mar; 96(3):746-749. PubMed ID: 12598256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats.
    Balon N; Kriem B; Dousset E; Weiss M; Rostain JC
    Brain Res; 2002 Aug; 947(2):218-24. PubMed ID: 12176164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaesthesia and the 'inert' gases with special reference to xenon.
    Kennedy RR; Stokes JW; Downing P
    Anaesth Intensive Care; 1992 Feb; 20(1):66-70. PubMed ID: 1319119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of inert gases and other general anaesthetics on the release of acetylcholine from the guinea-pig ileum.
    Halliday DJ; Little HJ; Paton WD
    Br J Pharmacol; 1979 Oct; 67(2):229-37. PubMed ID: 227512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen at raised pressure interacts with the GABA(A) receptor to produce its narcotic pharmacological effect in the rat.
    David HN; Balon N; Rostain JC; Abraini JH
    Anesthesiology; 2001 Oct; 95(4):921-7. PubMed ID: 11605933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Streptococcus faecalis under high hydrostatic pressure and high partial pressures of inert gases.
    Fenn WO; Marquis RE
    J Gen Physiol; 1968 Nov; 52(5):810-24. PubMed ID: 4972126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hydrostatic pressure and inert gases on twitch tension.
    Gennser M; Ornhagen HC
    Undersea Biomed Res; 1989 Nov; 16(6):415-26. PubMed ID: 2557697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of xenon, nitrous oxide and nitrogen on gas bubble expansion during cardiopulmonary bypass.
    Grocott HP; Sato Y; Homi HM; Smith BE
    Eur J Anaesthesiol; 2005 May; 22(5):353-8. PubMed ID: 15918383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.
    Balon N; Risso JJ; Blanc F; Rostain JC; Weiss M
    Life Sci; 2003 May; 72(24):2731-40. PubMed ID: 12679190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interactions between pressure and anaesthetics.
    Smith RA; Dodson BA; Miller KW
    Philos Trans R Soc Lond B Biol Sci; 1984 Jan; 304(1118):69-84. PubMed ID: 6142481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers.
    Moskovitz Y; Yang H
    Soft Matter; 2015 Mar; 11(11):2125-38. PubMed ID: 25612767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposing effects of anesthetics on pressure tolerance and compression rate effect.
    Brauer RW; Dutcher JA
    J Appl Physiol (1985); 1987 Apr; 62(4):1635-46. PubMed ID: 3597235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The opposing physiological effects of high pressures and inert gases.
    Miller KW
    Fed Proc; 1977 Apr; 36(5):1663-7. PubMed ID: 191296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low susceptibility to inert gases and pressure symptoms in TREK-1-deficient mice.
    Vallée N; Rostain JC; Risso JJ
    Neuroreport; 2009 Feb; 20(3):343-7. PubMed ID: 19444956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of inert gases on the intensity of lipid peroxidation in the rat liver].
    Govorukha TN; Nazarenko AI; Seredenko MM
    Ukr Biokhim Zh (1978); 1990; 62(4):100-3. PubMed ID: 2173183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent neurochemical basis of inert gas narcosis and pressure effects.
    Rostain JC; Balon N
    Undersea Hyperb Med; 2006; 33(3):197-204. PubMed ID: 16869533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of helium and other inert gases on Echinosphaerium nucleofilium (protozoa, heliozoa).
    Miller JB; Aidley JS; Kitching JA
    J Exp Biol; 1975 Oct; 63(2):467-81. PubMed ID: 172584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inert gas and raised pressure: evidence that motor decrements are due to pressure per se and cognitive decrements due to narcotic action.
    Abraini JH
    Pflugers Arch; 1997 Apr; 433(6):788-91. PubMed ID: 9049171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.