These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9767388)

  • 1. Intracellular Ca2+ during metabolic activation of KATP channels in spontaneously active dorsal vagal neurons in medullary slices.
    Ballanyi K; Kulik A
    Eur J Neurosci; 1998 Aug; 10(8):2574-85. PubMed ID: 9767388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-independent anoxic activation of ATP-sensitive K+ channels in dorsal vagal neurons of juvenile mice in situ.
    Müller M; Brockhaus J; Ballanyi K
    Neuroscience; 2002; 109(2):313-28. PubMed ID: 11801367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ.
    Kulik A; Brockhaus J; Pedarzani P; Ballanyi K
    Neuroscience; 2002; 110(3):541-54. PubMed ID: 11906792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro.
    Trapp S; Ballanyi K
    J Physiol; 1995 Aug; 487(1):37-50. PubMed ID: 7473257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular pH and KATP channel activity in dorsal vagal neurons of juvenile rats in situ during metabolic disturbances.
    Raupach T; Ballanyi K
    Brain Res; 2004 Aug; 1017(1-2):137-45. PubMed ID: 15261109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ischemia but not anoxia evokes vesicular and Ca(2+)-independent glutamate release in the dorsal vagal complex in vitro.
    Kulik A; Trapp S; Ballanyi K
    J Neurophysiol; 2000 May; 83(5):2905-15. PubMed ID: 10805687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion.
    Ballanyi K; Doutheil J; Brockhaus J
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):769-84. PubMed ID: 8887782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ.
    Karschin A; Brockhaus J; Ballanyi K
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):339-46. PubMed ID: 9575284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes.
    Quayle JM; Turner MR; Burrell HE; Kamishima T
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H71-80. PubMed ID: 16489108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice.
    Mironov SL; Langohr K; Haller M; Richter DW
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):755-66. PubMed ID: 9596797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous activation of KATP current in rat dorsal vagal neurones.
    Trapp S; Ballanyi K; Richter DW
    Neuroreport; 1994 Jun; 5(10):1285-8. PubMed ID: 7919183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.
    Islam MS; Larsson O; Nilsson T; Berggren PO
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):679-86. PubMed ID: 7702559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic beta-cells by both direct and indirect mechanisms.
    Miura Y; Henquin JC; Gilon P
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):387-98. PubMed ID: 9306280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diazoxide causes early activation of cardiac sarcolemmal KATP channels during metabolic inhibition by an indirect mechanism.
    Rodrigo GC; Davies NW; Standen NB
    Cardiovasc Res; 2004 Feb; 61(3):570-9. PubMed ID: 14962487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical characterization of rat caudal hypothalamic neurons: calcium channel contribution to excitability.
    Fan YP; Horn EM; Waldrop TG
    J Neurophysiol; 2000 Dec; 84(6):2896-903. PubMed ID: 11110819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells.
    Olsen HL; Theander S; Bokvist K; Buschard K; Wollheim CB; Gromada J
    Endocrinology; 2005 Nov; 146(11):4861-70. PubMed ID: 16081632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    J Membr Biol; 2000 Dec; 178(3):205-14. PubMed ID: 11140276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.