BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 9767444)

  • 1. From sentinel to messenger: an extended phenotypic analysis of the monocyte to dendritic cell transition.
    Woodhead VE; Binks MH; Chain BM; Katz DR
    Immunology; 1998 Aug; 94(4):552-9. PubMed ID: 9767444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4.
    Kiertscher SM; Roth MD
    J Leukoc Biol; 1996 Feb; 59(2):208-18. PubMed ID: 8603993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Costimulatory function of umbilical cord blood CD14+ and CD34+ derived dendritic cells.
    Dilioglou S; Cruse JM; Lewis RE
    Exp Mol Pathol; 2003 Aug; 75(1):18-33. PubMed ID: 12834622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation.
    Wang YS; Chi KH; Liao KW; Liu CC; Cheng CL; Lin YC; Cheng CH; Chu RM
    Can J Vet Res; 2007 Jul; 71(3):165-74. PubMed ID: 17695590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD14+CD16++ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics.
    Ancuta P; Weiss L; Haeffner-Cavaillon N
    Eur J Immunol; 2000 Jul; 30(7):1872-83. PubMed ID: 10940876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel molecular mechanisms of dendritic cell-induced T cell activation.
    Woodhead VE; Stonehouse TJ; Binks MH; Speidel K; Fox DA; Gaya A; Hardie D; Henniker AJ; Horejsi V; Sagawa K; Skubitz KM; Taskov H; Todd RF; van Agthoven A; Katz DR; Chain BM
    Int Immunol; 2000 Jul; 12(7):1051-61. PubMed ID: 10882417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells.
    Xia CQ; Kao KJ
    Int Immunol; 2003 Aug; 15(8):1007-15. PubMed ID: 12882838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells.
    Dilioglou S; Cruse JM; Lewis RE
    Exp Mol Pathol; 2003 Dec; 75(3):217-27. PubMed ID: 14611813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of autologous serum on CD34(+) or monocyte-derived dendritic cells.
    Loudovaris M; Hansen M; Suen Y; Lee SM; Casing P; Bender JG
    J Hematother Stem Cell Res; 2001 Aug; 10(4):569-78. PubMed ID: 11522239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility to generate monocyte-derived dendritic cell from coculture with melanoma tumor cells in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4.
    Kim YT; Hersh EM; Trevor KT
    Am J Reprod Immunol; 2003 Apr; 49(4):230-8. PubMed ID: 12852497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CpG-independent synergistic induction of beta-chemokines and a dendritic cell phenotype by orthophosphorothioate oligodeoxynucleotides and granulocyte-macrophage colony-stimulating factor in elutriated human primary monocytes.
    Wang J; Alvarez R; Roderiquez G; Guan E; Caldwell Q; Wang J; Phelan M; Norcross MA
    J Immunol; 2005 May; 174(10):6113-21. PubMed ID: 15879106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of CMRF-44+ monocyte-derived dendritic cells: insights into phenotype and function.
    Vuckovic S; Fearnley DB; Mannering SI; Dekker J; Whyte LF; Hart DN
    Exp Hematol; 1998 Dec; 26(13):1255-64. PubMed ID: 9845382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes.
    Pickl WF; Majdic O; Kohl P; Stöckl J; Riedl E; Scheinecker C; Bello-Fernandez C; Knapp W
    J Immunol; 1996 Nov; 157(9):3850-9. PubMed ID: 8892615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry.
    Clayton A; Court J; Navabi H; Adams M; Mason MD; Hobot JA; Newman GR; Jasani B
    J Immunol Methods; 2001 Jan; 247(1-2):163-74. PubMed ID: 11150547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired dendritic cell differentiation and maturation in the absence of C3.
    Reis ES; Barbuto JA; Köhl J; Isaac L
    Mol Immunol; 2008 Apr; 45(7):1952-62. PubMed ID: 18061265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-4 decreases the expression of the monocyte differentiation marker CD14, paralleled by an increasing accessory potency.
    Ruppert J; Friedrichs D; Xu H; Peters JH
    Immunobiology; 1991 Aug; 182(5):449-64. PubMed ID: 1717365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells.
    Fernandez Pujol B; Lucibello FC; Zuzarte M; Lütjens P; Müller R; Havemann K
    Eur J Cell Biol; 2001 Jan; 80(1):99-110. PubMed ID: 11211940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple chemicals can induce maturation and apoptosis of dendritic cells.
    Manome H; Aiba S; Tagami H
    Immunology; 1999 Dec; 98(4):481-90. PubMed ID: 10594678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells.
    Zhou LJ; Tedder TF
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2588-92. PubMed ID: 8637918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-15-induced conversion of monocytes to mature dendritic cells.
    Saikh KU; Khan AS; Kissner T; Ulrich RG
    Clin Exp Immunol; 2001 Dec; 126(3):447-55. PubMed ID: 11737061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.