These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9767476)

  • 1. Ultrathin fluorescent layers for monitoring the axial resolution in confocal and two-photon fluorescence microscopy.
    Schrader M; Hofmann UG; Hell SW
    J Microsc; 1998 Aug; 191(2):135-140. PubMed ID: 9767476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy.
    Vicidomini G; Schneider M; Bianchini P; Krol S; Szellas T; Diaspro A
    J Microsc; 2007 Jan; 225(Pt 1):88-95. PubMed ID: 17286698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts.
    Nagorni M; Hell SW
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):36-48. PubMed ID: 11152002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial resolution enhancement by 4Pi confocal fluorescence microscopy with two-photon excitation.
    Glaschick S; Röcker C; Deuschle K; Wiedenmann J; Oswald F; Mailänder V; Nienhaus GU
    J Biol Phys; 2007 Dec; 33(5-6):433-43. PubMed ID: 19669529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial filtering nearly eliminates the side-lobes in single- and multi-photon 4pi-type-C super-resolution fluorescence microscopy.
    M K; Regmi R; Mondal PP
    Rev Sci Instrum; 2013 Sep; 84(9):093704. PubMed ID: 24089833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial apodization in 4Pi-confocal microscopy by annular binary filters.
    Martińez-Corral M; Pons A; Caballero MT
    J Opt Soc Am A Opt Image Sci Vis; 2002 Aug; 19(8):1532-6. PubMed ID: 12152693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence microscopy with super-resolved optical sections.
    Egner A; Hell SW
    Trends Cell Biol; 2005 Apr; 15(4):207-15. PubMed ID: 15817377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a standing-wave fluorescence microscope with high nodal plane flatness.
    Freimann R; Pentz S; Hörler H
    J Microsc; 1997 Sep; 187(Pt 3):193-200. PubMed ID: 9351235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image formation and data acquisition in a stage scanning 4Pi confocal fluorescence microscope.
    Soini JT; Schrader M; Hänninen PE; Hell SW
    Appl Opt; 1997 Dec; 36(34):8929-34. PubMed ID: 18264445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration.
    Nagorni M; Hell SW
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):49-54. PubMed ID: 11152003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy.
    Ivanchenko S; Glaschick S; Röcker C; Oswald F; Wiedenmann J; Nienhaus GU
    Biophys J; 2007 Jun; 92(12):4451-7. PubMed ID: 17384061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the lateral resolution of 4Pi fluorescence microscopes.
    Sandeau N; Giovannini H
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1089-95. PubMed ID: 16642186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
    Lee DR; Kim YD; Gweon DG; Yoo H
    Opt Express; 2013 Jul; 21(15):17839-48. PubMed ID: 23938657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment.
    Egner A; Andresen V; Hell SW
    J Microsc; 2002 Apr; 206(Pt 1):24-32. PubMed ID: 12000560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.
    Braaf B; de Boer JF
    Opt Express; 2017 Mar; 25(6):6475-6496. PubMed ID: 28380997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical transfer functions of 4Pi confocal microscopes: theory and experiment.
    Schrader M; Kozubek M; Hell SW; Wilson T
    Opt Lett; 1997 Apr; 22(7):436-8. PubMed ID: 18183226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving axial resolution in confocal microscopy with new high refractive index mounting media.
    Fouquet C; Gilles JF; Heck N; Dos Santos M; Schwartzmann R; Cannaya V; Morel MP; Davidson RS; Trembleau A; Bolte S
    PLoS One; 2015; 10(3):e0121096. PubMed ID: 25822785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4Pi microscopy of quantum dot-labeled cellular structures.
    Medda R; Jakobs S; Hell SW; Bewersdorf J
    J Struct Biol; 2006 Dec; 156(3):517-23. PubMed ID: 17045487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon fluorescence isotropic-single-objective microscopy.
    Le Moal E; Mudry E; Chaumet PC; Ferrand P; Sentenac A
    Opt Lett; 2012 Jan; 37(1):85-7. PubMed ID: 22212799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase determination in interference-based superresolving microscopes through critical frequency analysis.
    Hell SW; Blanca CM; Bewersdorf J
    Opt Lett; 2002 Jun; 27(11):888-90. PubMed ID: 18026313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.