These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 9767587)
1. Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella. Muramoto K; Macnab RM Mol Microbiol; 1998 Sep; 29(5):1191-202. PubMed ID: 9767587 [TBL] [Abstract][Full Text] [Related]
2. Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. Van Way SM; Hosking ER; Braun TF; Manson MD J Mol Biol; 2000 Mar; 297(1):7-24. PubMed ID: 10704303 [TBL] [Abstract][Full Text] [Related]
3. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB. Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919 [TBL] [Abstract][Full Text] [Related]
4. Motility protein interactions in the bacterial flagellar motor. Garza AG; Harris-Haller LW; Stoebner RA; Manson MD Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209 [TBL] [Abstract][Full Text] [Related]
5. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Morimoto YV; Namba K; Minamino T Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32872412 [TBL] [Abstract][Full Text] [Related]
6. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. Asai Y; Yakushi T; Kawagishi I; Homma M J Mol Biol; 2003 Mar; 327(2):453-63. PubMed ID: 12628250 [TBL] [Abstract][Full Text] [Related]
7. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor. Kojima S; Furukawa Y; Matsunami H; Minamino T; Namba K J Bacteriol; 2008 May; 190(9):3314-22. PubMed ID: 18310339 [TBL] [Abstract][Full Text] [Related]
9. Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. Zhou J; Blair DF J Mol Biol; 1997 Oct; 273(2):428-39. PubMed ID: 9344750 [TBL] [Abstract][Full Text] [Related]
10. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Braun TF; Al-Mawsawi LQ; Kojima S; Blair DF Biochemistry; 2004 Jan; 43(1):35-45. PubMed ID: 14705929 [TBL] [Abstract][Full Text] [Related]
11. Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. Platzer J; Sterr W; Hausmann M; Schmitt R J Bacteriol; 1997 Oct; 179(20):6391-9. PubMed ID: 9335288 [TBL] [Abstract][Full Text] [Related]
12. Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Suzuki Y; Morimoto YV; Oono K; Hayashi F; Oosawa K; Kudo S; Nakamura S J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30642987 [TBL] [Abstract][Full Text] [Related]
13. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499 [TBL] [Abstract][Full Text] [Related]
14. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation. Che YS; Nakamura S; Kojima S; Kami-ike N; Namba K; Minamino T J Bacteriol; 2008 Oct; 190(20):6660-7. PubMed ID: 18723617 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the motA flagellar motor gene from Rhodobacter sphaeroides, a bacterium with a unidirectional, stop-start flagellum. Shah DS; Sockett RE Mol Microbiol; 1995 Sep; 17(5):961-9. PubMed ID: 8596445 [TBL] [Abstract][Full Text] [Related]
16. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. Gosink KK; Häse CC J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732 [TBL] [Abstract][Full Text] [Related]
17. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. Asai Y; Kawagishi I; Sockett RE; Homma M J Bacteriol; 1999 Oct; 181(20):6332-8. PubMed ID: 10515922 [TBL] [Abstract][Full Text] [Related]
18. Conformational change in the stator of the bacterial flagellar motor. Kojima S; Blair DF Biochemistry; 2001 Oct; 40(43):13041-50. PubMed ID: 11669642 [TBL] [Abstract][Full Text] [Related]
19. Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Kojima S; Imada K; Sakuma M; Sudo Y; Kojima C; Minamino T; Homma M; Namba K Mol Microbiol; 2009 Aug; 73(4):710-8. PubMed ID: 19627504 [TBL] [Abstract][Full Text] [Related]
20. Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Sharp LL; Zhou J; Blair DF Biochemistry; 1995 Jul; 34(28):9166-71. PubMed ID: 7619816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]