BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 9768510)

  • 1. Scattering of electromagnetic waves from dense distributions of spheroidal particles based on Monte Carlo simulations.
    Tsang L; Ding KH; Shih SE; Kong JA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Oct; 15(10):2660-9. PubMed ID: 9768510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids.
    Ao CO; Kong JA
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1145-56. PubMed ID: 12049352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattering and absorption in dense discrete random media of irregular particles.
    Markkanen J; Väisänen T; Penttilä A; Muinonen K
    Opt Lett; 2018 Jun; 43(12):2925-2928. PubMed ID: 29905725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering And Absorption of Light in Planetary Regoliths.
    Muinonen K; Väisänen T; Martikainen J; Markkanen J; Penttilä A; Gritsevich M; Peltoniemi J; Blum J; Herranen J; Videen G; Maconi G; Helander P; Salmi A; Kassamakov I; Haeggström E
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31305514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.
    Cohen D; Stamnes S; Tanikawa T; Sommersten ER; Stamnes JJ; Lotsberg JK; Stamnes K
    Opt Express; 2013 Apr; 21(8):9592-614. PubMed ID: 23609670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.
    Voit F; Hohmann A; Schäfer J; Kienle A
    J Biomed Opt; 2012 Apr; 17(4):045003. PubMed ID: 22559677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative transfer with reciprocal transactions: Numerical method and its implementation.
    Väisänen T; Markkanen J; Penttilä A; Muinonen K
    PLoS One; 2019; 14(1):e0210155. PubMed ID: 30620746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates.
    Schulz FM; Stamnes K; Stamnes JJ
    Appl Opt; 1998 Nov; 37(33):7875-96. PubMed ID: 18301630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of light propagation and scattering in turbid biological media.
    Lopatin VV; Pnezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2001; 29(3):400-19. PubMed ID: 11730101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering by randomly oriented spheroidal particles.
    Asano S; Sato M
    Appl Opt; 1980 Mar; 19(6):962-74. PubMed ID: 20220965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves.
    Mézière F; Muller M; Dobigny B; Bossy E; Derode A
    J Acoust Soc Am; 2013 Feb; 133(2):643-52. PubMed ID: 23363084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2009 Aug; 17(16):13792-809. PubMed ID: 19654786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic scattering by densely packed particulate ice at radar wavelengths: exact theoretical results and remote-sensing implications.
    Mishchenko MI; Liu L
    Appl Opt; 2009 May; 48(13):2421-6. PubMed ID: 19412198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength.
    Mishchenko MI
    Appl Opt; 1993 Aug; 32(24):4652-66. PubMed ID: 20830130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering properties of spheroidal particles.
    Asano S
    Appl Opt; 1979 Mar; 18(5):712-23. PubMed ID: 20208804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of ingredient concentration in powders using two-speed photon migration theory and measurements.
    Pan T; Sevick-Muraca EM
    J Pharm Sci; 2006 Mar; 95(3):530-41. PubMed ID: 16419047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Radiother Oncol; 2008 Jan; 86(1):104-8. PubMed ID: 18086502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.