BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 9768837)

  • 1. Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in Neurons: a mechanism for attenuation of olfactory signals.
    Wei J; Zhao AZ; Chan GC; Baker LP; Impey S; Beavo JA; Storm DR
    Neuron; 1998 Sep; 21(3):495-504. PubMed ID: 9768837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase-Independent Acid Sensing of Mouse Olfactory Sensory Neurons.
    Yang J; Qiu L; Strobel M; Kabel A; Zha XM; Chen X
    Mol Neurobiol; 2020 Jul; 57(7):3042-3056. PubMed ID: 32458389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo.
    Wei J; Wayman G; Storm DR
    J Biol Chem; 1996 Sep; 271(39):24231-5. PubMed ID: 8798667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo.
    Wayman GA; Wei J; Wong S; Storm DR
    Mol Cell Biol; 1996 Nov; 16(11):6075-82. PubMed ID: 8887637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice.
    Wong ST; Trinh K; Hacker B; Chan GC; Lowe G; Gaggar A; Xia Z; Gold GH; Storm DR
    Neuron; 2000 Sep; 27(3):487-97. PubMed ID: 11055432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Ca2+ and calmodulin on adenylyl cyclase activity in sheep olfactory epithelium.
    Fabbri E; Ferretti ME; Buzzi M; Colamussi ML; Biondi C
    Neurochem Res; 1995 Dec; 20(12):1511-7. PubMed ID: 8789615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired odor adaptation in olfactory receptor neurons after inhibition of Ca2+/calmodulin kinase II.
    Leinders-Zufall T; Ma M; Zufall F
    J Neurosci; 1999 Jul; 19(14):RC19. PubMed ID: 10407061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of electro-olfactogram responses in the main olfactory epithelia by airflow depends on the type 3 adenylyl cyclase.
    Chen X; Xia Z; Storm DR
    J Neurosci; 2012 Nov; 32(45):15769-78. PubMed ID: 23136416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β3GnT2 maintains adenylyl cyclase-3 signaling and axon guidance molecule expression in the olfactory epithelium.
    Henion TR; Faden AA; Knott TK; Schwarting GA
    J Neurosci; 2011 Apr; 31(17):6576-86. PubMed ID: 21525298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system.
    Wang H; Storm DR
    Mol Pharmacol; 2003 Mar; 63(3):463-8. PubMed ID: 12606751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium.
    Trinh K; Storm DR
    Nat Neurosci; 2003 May; 6(5):519-25. PubMed ID: 12665798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
    Chen S; Lane AP; Bock R; Leinders-Zufall T; Zufall F
    J Neurophysiol; 2000 Jul; 84(1):575-80. PubMed ID: 10899229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of intracellular cyclic GMP levels in olfactory sensory neurons.
    Moon C; Simpson PJ; Tu Y; Cho H; Ronnett GV
    J Neurochem; 2005 Oct; 95(1):200-9. PubMed ID: 16181424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of odorants through the main olfactory epithelium and vomeronasal organ of mice.
    Trinh K; Storm DR
    Nutr Rev; 2004 Nov; 62(11 Pt 2):S189-92; discussion S224-41. PubMed ID: 15630934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olfactory transduction mechanisms in sheep.
    Fabbri E; Ferretti ME; Buzzi M; Cavallaro R; Vesce G; Biondi C
    Neurochem Res; 1995 Jun; 20(6):719-25. PubMed ID: 7566369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of luteolin on the odorant-induced cAMP level in HEK293 cells expressing the olfactory receptor.
    Yoon YC; Hwang JT; Sung MJ; Wang S; Munkhtugs D; Rhyu MR; Park JH
    Biofactors; 2012; 38(5):360-4. PubMed ID: 22593001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA inhibition of cyclic AMP production in immortalized GnRH neurons is mediated by calcineurin-dependent dephosphorylation of adenylyl cyclase 9.
    Martin C; Jacobi JS; Nava G; Jeziorski MC; Clapp C; Martínez de la Escalera G
    Neuroendocrinology; 2007; 85(4):257-66. PubMed ID: 17551263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase.
    Boccaccio A; Lagostena L; Hagen V; Menini A
    J Gen Physiol; 2006 Aug; 128(2):171-84. PubMed ID: 16880265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal neurons express a calcineurin-activated adenylyl cyclase.
    Chan GC; Tonegawa S; Storm DR
    J Neurosci; 2005 Oct; 25(43):9913-8. PubMed ID: 16251439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium modulates the rapid kinetics of the odorant-induced cyclic AMP signal in rat olfactory cilia.
    Jaworsky DE; Matsuzaki O; Borisy FF; Ronnett GV
    J Neurosci; 1995 Jan; 15(1 Pt 1):310-8. PubMed ID: 7823137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.