BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 9769097)

  • 21. Two zebrafish (Danio rerio) antizymes with different expression and activities.
    Saito T; Hascilowicz T; Ohkido I; Kikuchi Y; Okamoto H; Hayashi S; Murakami Y; Matsufuji S
    Biochem J; 2000 Jan; 345 Pt 1(Pt 1):99-106. PubMed ID: 10600644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antisense-induced ribosomal frameshifting.
    Henderson CM; Anderson CB; Howard MT
    Nucleic Acids Res; 2006; 34(15):4302-10. PubMed ID: 16920740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting.
    Wang J; Zhou J; Yang Q; Grayhack EJ
    Elife; 2018 Nov; 7():. PubMed ID: 30465652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting.
    Taliaferro D; Farabaugh PJ
    RNA; 2007 Apr; 13(4):606-13. PubMed ID: 17329356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting.
    Tosaka Y; Tanaka H; Yano Y; Masai K; Nozaki M; Yomogida K; Otani S; Nojima H; Nishimune Y
    Genes Cells; 2000 Apr; 5(4):265-76. PubMed ID: 10792465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme.
    Palanimurugan R; Scheel H; Hofmann K; Dohmen RJ
    EMBO J; 2004 Dec; 23(24):4857-67. PubMed ID: 15538383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast.
    Sundararajan A; Michaud WA; Qian Q; Stahl G; Farabaugh PJ
    Mol Cell; 1999 Dec; 4(6):1005-15. PubMed ID: 10635325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide sequence of ornithine decarboxylase antizyme cDNA from Xenopus laevis.
    Ichiba T; Matsufuji S; Miyazaki Y; Hayashi S
    Biochim Biophys Acta; 1995 May; 1262(1):83-6. PubMed ID: 7772605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats.
    Wolf AS; Grayhack EJ
    RNA; 2015 May; 21(5):935-45. PubMed ID: 25792604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypusinated eIF5A Promotes Ribosomal Frameshifting during Decoding of ODC Antizyme mRNA in
    Halwas K; Döring LM; Oehlert FV; Dohmen RJ
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the mechanism of leftward frameshifting at several hungry codons.
    Barak Z; Lindsley D; Gallant J
    J Mol Biol; 1996 Mar; 256(4):676-84. PubMed ID: 8642590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order Saccharomycetales.
    Farabaugh PJ; Kramer E; Vallabhaneni H; Raman A
    J Mol Evol; 2006 Oct; 63(4):545-61. PubMed ID: 16838213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting.
    Rom E; Kahana C
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3959-63. PubMed ID: 8171019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in
    Xiao Y; Wang R; Han X; Wang W; Liang A
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift.
    Rato C; Amirova SR; Bates DG; Stansfield I; Wallace HM
    Nucleic Acids Res; 2011 Jun; 39(11):4587-97. PubMed ID: 21303766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Cotranslational Polyamine Sensing During Decoding of ODC Antizyme mRNA.
    Palanimurugan R; Gödderz D; Kurian L; Dohmen RJ
    Methods Mol Biol; 2018; 1694():309-323. PubMed ID: 29080176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dynamical model of programmed -1 ribosomal frameshifting.
    Xie P
    J Theor Biol; 2013 Nov; 336():119-31. PubMed ID: 23911574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.