BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9769239)

  • 1. Role of microtubules in the viscoelastic properties of isolated cardiac muscle.
    Yamamoto S; Tsutsui H; Takahashi M; Ishibashi Y; Tagawa H; Imanaka-Yoshida K; Saeki Y; Takeshita A
    J Mol Cell Cardiol; 1998 Sep; 30(9):1841-53. PubMed ID: 9769239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubules modulate the stiffness of cardiomyocytes against shear stress.
    Nishimura S; Nagai S; Katoh M; Yamashita H; Saeki Y; Okada J; Hisada T; Nagai R; Sugiura S
    Circ Res; 2006 Jan; 98(1):81-7. PubMed ID: 16306445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of microtubules in the contractile dysfunction of myocytes from tachycardia-induced dilated cardiomyopathy.
    Takahashi M; Tsutsui H; Kinugawa S; Igarashi-Saito K; Yamamoto S; Yamamoto M; Tagawa H; Imanaka-Yoshida K; Egashira K; Takeshita A
    J Mol Cell Cardiol; 1998 May; 30(5):1047-57. PubMed ID: 9618245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic colchicine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats.
    Tsutsui H; Ishibashi Y; Takahashi M; Namba T; Tagawa H; Imanaka-Yoshida K; Takeshita A
    J Mol Cell Cardiol; 1999 Jun; 31(6):1203-13. PubMed ID: 10371695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging affects passive stiffness and spindle function of the rat soleus muscle.
    Rosant C; Nagel MD; PĂ©rot C
    Exp Gerontol; 2007 Apr; 42(4):301-8. PubMed ID: 17118602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method.
    Wagner O; Zinke J; Dancker P; Grill W; Bereiter-Hahn J
    Biophys J; 1999 May; 76(5):2784-96. PubMed ID: 10233094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of a locomotory muscle of the tobacco hornworm Manduca sexta during strain cycling and simulated natural crawling.
    Woods WA; Fusillo SJ; Trimmer BA
    J Exp Biol; 2008 Mar; 211(Pt 6):873-82. PubMed ID: 18310113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac microtubules are more resistant to chemical depolymerisation in streptozotocin-induced diabetes in the rat.
    Howarth FC; Qureshi MA; White E; Calaghan SC
    Pflugers Arch; 2002 Jun; 444(3):432-7. PubMed ID: 12111253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of self-assembled type I collagen fibers: molecular basis of elastic and viscous behaviors.
    Silver FH; Ebrahimi A; Snowhill PB
    Connect Tissue Res; 2002; 43(4):569-80. PubMed ID: 12685863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation.
    Wu ZZ; Zhang G; Long M; Wang HB; Song GB; Cai SX
    Biorheology; 2000; 37(4):279-90. PubMed ID: 11145074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium.
    Caporizzo MA; Chen CY; Bedi K; Margulies KB; Prosser BL
    Circulation; 2020 Mar; 141(11):902-915. PubMed ID: 31941365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells.
    Hemmer JD; Nagatomi J; Wood ST; Vertegel AA; Dean D; Laberge M
    J Biomech Eng; 2009 Apr; 131(4):041001. PubMed ID: 19275430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the contractile performance of the hypertrophied myocardium from spontaneous hypertensive rats and normotensive infarcted rats.
    Mill JG; Novaes MA; Galon M; Nogueira JB; Vassallo DV
    Can J Physiol Pharmacol; 1998 Apr; 76(4):387-94. PubMed ID: 9795747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness.
    Harris TS; Baicu CF; Conrad CH; Koide M; Buckley JM; Barnes M; Cooper G; Zile MR
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2173-82. PubMed ID: 12003826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanics model of microtubule buckling in living cells.
    Li T
    J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Viscoelastic properties of relaxed papillary muscle at physiological hypertrophy].
    Smoliuk LT; Lisin RV; Kuznetsov DA; Protsenko IuL
    Biofizika; 2012; 57(4):690-5. PubMed ID: 23035537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy.
    Karl I; Bereiter-Hahn J
    Cell Biochem Biophys; 1998; 29(3):225-41. PubMed ID: 9868580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetaldehyde depresses myocardial contraction and cardiac myocyte shortening in spontaneously hypertensive rats: role of intracellular Ca2+.
    Brown RA; Jefferson L; Sudan N; Lloyd TC; Ren J
    Cell Mol Biol (Noisy-le-grand); 1999 Jun; 45(4):453-65. PubMed ID: 10432192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal viscoelastic loading in cat papillary muscle.
    Chiu YL; Ballou EW; Ford LE
    Biophys J; 1982 Nov; 40(2):109-20. PubMed ID: 7171707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.