BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9769944)

  • 1. Post-translational modification of p53 and the integration of stress signals.
    Meek DW
    Pathol Biol (Paris); 1997 Dec; 45(10):804-14. PubMed ID: 9769944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cell cycle regulation after exposure to ionizing radiation].
    Teyssier F; Bay JO; Dionet C; Verrelle P
    Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How phosphorylation regulates the activity of p53.
    Steegenga WT; van der Eb AJ; Jochemsen AG
    J Mol Biol; 1996 Oct; 263(2):103-13. PubMed ID: 8913292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells.
    Puca R; Nardinocchi L; Givol D; D'Orazi G
    Oncogene; 2010 Aug; 29(31):4378-87. PubMed ID: 20514025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry.
    Abraham J; Kelly J; Thibault P; Benchimol S
    J Mol Biol; 2000 Jan; 295(4):853-64. PubMed ID: 10656795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of p53 protein in response to ionizing radiation occurs at multiple sites in both normal and DNA-PK deficient cells.
    Abraham J; Spaner D; Benchimol S
    Oncogene; 1999 Feb; 18(8):1521-7. PubMed ID: 10102621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potential.
    Mundt M; Hupp T; Fritsche M; Merkle C; Hansen S; Lane D; Groner B
    Oncogene; 1997 Jul; 15(2):237-44. PubMed ID: 9244359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents.
    Sanchez-Prieto R; Rojas JM; Taya Y; Gutkind JS
    Cancer Res; 2000 May; 60(9):2464-72. PubMed ID: 10811125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses.
    Jimenez GS; Khan SH; Stommel JM; Wahl GM
    Oncogene; 1999 Dec; 18(53):7656-65. PubMed ID: 10618705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway.
    Mérienne K; Jacquot S; Zeniou M; Pannetier S; Sassone-Corsi P; Hanauer A
    Oncogene; 2000 Aug; 19(37):4221-9. PubMed ID: 10980595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines.
    Blanco S; Klimcakova L; Vega FM; Lazo PA
    FEBS J; 2006 Jun; 273(11):2487-504. PubMed ID: 16704422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 and cell-cycle control: a finger in every pie.
    North S; Hainaut P
    Pathol Biol (Paris); 2000 Apr; 48(3):255-70. PubMed ID: 10858958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of murine p53, but not human p53, by MAP kinase in vitro and in cultured cells highlights species-dependent variation in post-translational modification.
    Jardine LJ; Milne DM; Dumaz N; Meek DW
    Oncogene; 1999 Dec; 18(52):7602-7. PubMed ID: 10602521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of apoptosis by p53 in UV-irradiated human epidermis, psoriatic plaques and senescent keratinocytes.
    Qin JZ; Chaturvedi V; Denning MF; Bacon P; Panella J; Choubey D; Nickoloff BJ
    Oncogene; 2002 May; 21(19):2991-3002. PubMed ID: 12082529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prosurvival activity of p53 protects cells from UV-induced apoptosis by inhibiting c-Jun NH2-terminal kinase activity and mitochondrial death signaling.
    Lo PK; Huang SZ; Chen HC; Wang FF
    Cancer Res; 2004 Dec; 64(23):8736-45. PubMed ID: 15574785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo.
    Wallace M; Coates PJ; Wright EG; Ball KL
    Oncogene; 2001 Jun; 20(28):3597-608. PubMed ID: 11439323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The c-Jun NH(2)-terminal protein kinase/AP-1 pathway is required for efficient apoptosis induced by vinblastine.
    Fan M; Goodwin ME; Birrer MJ; Chambers TC
    Cancer Res; 2001 Jun; 61(11):4450-8. PubMed ID: 11389075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.
    Gulati AP; Yang YM; Harter D; Mukhopadhyay A; Aggarwal BB; Benzil DL; Whysner J; Albino AP; Murali R; Jhanwar-Uniyal M
    Mol Carcinog; 2006 Jan; 45(1):26-37. PubMed ID: 16267831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of switching on p53: a role for covalent modification?
    Meek DW
    Oncogene; 1999 Dec; 18(53):7666-75. PubMed ID: 10618706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.