BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9770495)

  • 21. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species.
    Berry JL; Cehovin A; McDowell MA; Lea SM; Pelicic V
    PLoS Genet; 2013; 9(12):e1004014. PubMed ID: 24385921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence analysis of serotype-specific synthesis regions II of Haemophilus influenzae serotypes c and d: evidence for common ancestry of capsule synthesis in Pasteurellaceae and Neisseria meningitidis.
    Lâm TT; Claus H; Frosch M; Vogel U
    Res Microbiol; 2011 Jun; 162(5):483-7. PubMed ID: 21513796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial DNA uptake sequences can accumulate by molecular drive alone.
    Maughan H; Wilson LA; Redfield RJ
    Genetics; 2010 Oct; 186(2):613-27. PubMed ID: 20628039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and Distribution of the
    Zhang A; Zhao P; Zhu B; Shi F; Xu L; Gao Y; Xie N; Shao Z
    Front Cell Infect Microbiol; 2017; 7():436. PubMed ID: 29057217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae.
    Takahata S; Ida T; Senju N; Sanbongi Y; Miyata A; Maebashi K; Hoshiko S
    Antimicrob Agents Chemother; 2007 May; 51(5):1589-95. PubMed ID: 17325223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triplex real-time PCR assay for the detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae directly from clinical specimens without extraction of DNA.
    Ouattara M; Whaley MJ; Jenkins LT; Schwartz SB; Traoré RO; Diarra S; Collard JM; Sacchi CT; Wang X
    Diagn Microbiol Infect Dis; 2019 Mar; 93(3):188-190. PubMed ID: 30413354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of acquired DNA in Neisseria lactamica.
    van Passel MW; Bart A; Luyf AC; van Kampen AH; van der Ende A
    FEMS Microbiol Lett; 2006 Sep; 262(1):77-84. PubMed ID: 16907742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a hotspot for transformation of Neisseria meningitidis by shuttle mutagenesis using signature-tagged transposons.
    Claus H; Frosch M; Vogel U
    Mol Gen Genet; 1998 Sep; 259(4):363-71. PubMed ID: 9790590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA uptake sequences in
    Spencer-Smith R; Roberts S; Gurung N; Snyder LAS
    Microb Genom; 2016 Aug; 2(8):e000069. PubMed ID: 28348864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators.
    Ambur OH; Frye SA; Tønjum T
    J Bacteriol; 2007 Mar; 189(5):2077-85. PubMed ID: 17194793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the Haemophilus influenzae uvr-1+ gene: homology with other uvrC-like genes and characterization of the Haemophilus influenzae uvr-1 and uvr-2 mutations.
    Gottschalk VA; Stuy JH
    SAAS Bull Biochem Biotechnol; 1997; 10():49-58. PubMed ID: 9274062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Population genomics: diversity and virulence in the Neisseria.
    Maiden MC
    Curr Opin Microbiol; 2008 Oct; 11(5):467-71. PubMed ID: 18822386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus.
    Morgan GJ; Hatfull GF; Casjens S; Hendrix RW
    J Mol Biol; 2002 Mar; 317(3):337-59. PubMed ID: 11922669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria.
    Snyder LA; McGowan S; Rogers M; Duro E; O'Farrell E; Saunders NJ
    Mol Biol Evol; 2007 Dec; 24(12):2802-15. PubMed ID: 17921485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The evolutionary relationships between the two bacteria Escherichia coli and Haemophilus influenzae and their putative last common ancestor.
    de Rosa R; Labedan B
    Mol Biol Evol; 1998 Jan; 15(1):17-27. PubMed ID: 9491601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variations in gene organization and DNA uptake signal sequence in the folP region between commensal and pathogenic Neisseria species.
    Qvarnstrom Y; Swedberg G
    BMC Microbiol; 2006 Feb; 6():11. PubMed ID: 16503987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of DNA recognition sites active in Haemophilus transformation.
    Danner DB; Smith HO; Narang SA
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2393-7. PubMed ID: 6285382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp.
    Snyder LA; Shafer WM; Saunders NJ
    Mol Microbiol; 2003 Jan; 47(2):431-42. PubMed ID: 12519193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetrameric repeat units associated with virulence factor phase variation in Haemophilus also occur in Neisseria spp. and Moraxella catarrhalis.
    Peak IR; Jennings MP; Hood DW; Bisercic M; Moxon ER
    FEMS Microbiol Lett; 1996 Mar; 137(1):109-14. PubMed ID: 8935664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae.
    Gladitz J; Shen K; Antalis P; Hu FZ; Post JC; Ehrlich GD
    Nucleic Acids Res; 2005; 33(11):3644-58. PubMed ID: 15983137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.