These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 9771387)
1. Contribution of the cortical shell of vertebrae to mechanical behaviour of the lumbar vertebrae with implications for predicting fracture risk. Andresen R; Werner HJ; Schober HC Br J Radiol; 1998 Jul; 71(847):759-65. PubMed ID: 9771387 [TBL] [Abstract][Full Text] [Related]
2. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests. Haidekker MA; Andresen R; Werner HJ Osteoporos Int; 1999; 9(5):433-40. PubMed ID: 10550463 [TBL] [Abstract][Full Text] [Related]
3. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study]. Konermann W; Stubbe F; Link T; Meier N Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827 [TBL] [Abstract][Full Text] [Related]
4. CT determination of bone mineral density and structural investigations on the axial skeleton for estimating the osteoporosis-related fracture risk by means of a risk score. Andresen R; Haidekker MA; Radmer S; Banzer D Br J Radiol; 1999 Jun; 72(858):569-78. PubMed ID: 10560339 [TBL] [Abstract][Full Text] [Related]
6. The trabecular effect: A population-based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity. Oppenheimer-Velez ML; Giambini H; Rezaei A; Camp JJ; Khosla S; Lu L Clin Biomech (Bristol); 2018 Jun; 55():73-78. PubMed ID: 29698852 [TBL] [Abstract][Full Text] [Related]
7. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582 [TBL] [Abstract][Full Text] [Related]
8. Risk of vertebral fractures in men: relationship to mineral density of the vertebral body. Resch A; Schneider B; Bernecker P; Battmann A; Wergedal J; Willvonseder R; Resch H AJR Am J Roentgenol; 1995 Jun; 164(6):1447-50. PubMed ID: 7754890 [TBL] [Abstract][Full Text] [Related]
9. Bone mineral density and spongiosa architecture in correlation to vertebral body insufficiency fractures. Andresen R; Radmer S; Banzer D Acta Radiol; 1998 Sep; 39(5):538-42. PubMed ID: 9755704 [TBL] [Abstract][Full Text] [Related]
10. Bone mineral density and vertebral fractures in men. Legrand E; Chappard D; Pascaretti C; Duquenne M; Rondeau C; Simon Y; Rohmer V; Basle MF; Audran M Osteoporos Int; 1999; 10(4):265-70. PubMed ID: 10692973 [TBL] [Abstract][Full Text] [Related]
11. Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Edmondston SJ; Singer KP; Day RE; Price RI; Breidahl PD Osteoporos Int; 1997; 7(2):142-8. PubMed ID: 9166395 [TBL] [Abstract][Full Text] [Related]
12. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Crawford RP; Keaveny TM Spine (Phila Pa 1976); 2004 Oct; 29(20):2248-55. PubMed ID: 15480136 [TBL] [Abstract][Full Text] [Related]
13. Relative strength of thoracic vertebrae in axial compression versus flexion. Buckley JM; Kuo CC; Cheng LC; Loo K; Motherway J; Slyfield C; Deviren V; Ames C Spine J; 2009 Jun; 9(6):478-85. PubMed ID: 19364678 [TBL] [Abstract][Full Text] [Related]
14. Lactose intolerance: a risk factor for reduced bone mineral density and vertebral fractures? Kudlacek S; Freudenthaler O; Weissböeck H; Schneider B; Willvonseder R J Gastroenterol; 2002; 37(12):1014-9. PubMed ID: 12522532 [TBL] [Abstract][Full Text] [Related]
15. Cortical and trabecular load sharing in the human vertebral body. Eswaran SK; Gupta A; Adams MF; Keaveny TM J Bone Miner Res; 2006 Feb; 21(2):307-14. PubMed ID: 16418787 [TBL] [Abstract][Full Text] [Related]
16. Improved assessment of lumbar vertebral body strength using supine lateral dual-energy x-ray absorptiometry. Myers BS; Arbogast KB; Lobaugh B; Harper KD; Richardson WJ; Drezner MK J Bone Miner Res; 1994 May; 9(5):687-93. PubMed ID: 8053398 [TBL] [Abstract][Full Text] [Related]
17. Finite element analysis of cancellous bone failure in the vertebral body of healthy and osteoporotic subjects. Boccaccio A; Vena P; Gastaldi D; Franzoso G; Pietrabissa R; Pappalettere C Proc Inst Mech Eng H; 2008 Oct; 222(7):1023-36. PubMed ID: 19024151 [TBL] [Abstract][Full Text] [Related]
18. Equivalent deficits in bone mass of the vertebral body and posterior processes in women with vertebral fractures: implications regarding the pathogenesis of spinal osteoporosis. Seeman E; Formica C; Mosekilde L J Bone Miner Res; 1995 Dec; 10(12):2005-10. PubMed ID: 8619382 [TBL] [Abstract][Full Text] [Related]
19. Fracture generation in human vertebrae under compression loading: The influence of pedicle preservation and bone mineral density on in vitro fracture behavior. Kraxenberger M; Schröder C; Geith T; Büttner A; von Schulze-Pellengahr C; Birkenmaier C; Müller PE; Jansson V; Wegener B Technol Health Care; 2018; 26(1):155-163. PubMed ID: 29154300 [TBL] [Abstract][Full Text] [Related]
20. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Briggs AM; Wrigley TV; van Dieën JH; Phillips B; Lo SK; Greig AM; Bennell KL Eur Spine J; 2006 Dec; 15(12):1785-95. PubMed ID: 16819622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]