These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9771573)

  • 1. Characterization of flow emerging from a stenosis using MRI.
    Gach HM; Lowe IJ
    Magn Reson Med; 1998 Oct; 40(4):559-70. PubMed ID: 9771573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring flow reattachment lengths downstream of a stenosis using MRI.
    Gach HM; Lowe IJ
    J Magn Reson Imaging; 2000 Dec; 12(6):939-48. PubMed ID: 11105033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-fast velocity imaging in stenotically produced turbulent jets using RUFIS.
    Madio DP; Gach HM; Lowe IJ
    Magn Reson Med; 1998 Apr; 39(4):574-80. PubMed ID: 9543419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observing curved flow using RUFIS.
    Gach HM; Lowe IJ
    Magn Reson Med; 1999 Jun; 41(6):1258-63. PubMed ID: 10371460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of pulsatile turbulent flow in stenotic vessels.
    Varghese SS; Frankel SH
    J Biomech Eng; 2003 Aug; 125(4):445-60. PubMed ID: 12968569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-dimensional flow MRI for evaluation of post-stenotic turbulent flow in a phantom: comparison with flowmeter and computational fluid dynamics.
    Kweon J; Yang DH; Kim GB; Kim N; Paek M; Stalder AF; Greiser A; Kim YH
    Eur Radiol; 2016 Oct; 26(10):3588-97. PubMed ID: 26747263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels.
    Oshinski JN; Ku DN; Pettigrew RI
    Magn Reson Med; 1995 Feb; 33(2):193-9. PubMed ID: 7707909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study.
    Gülan U; Binter C; Kozerke S; Holzner M
    J Biomech; 2017 May; 56():89-96. PubMed ID: 28342532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encoding-validation against 3D particle tracking velocimetry.
    Knobloch V; Binter C; Gülan U; Sigfridsson A; Holzner M; Lüthi B; Kozerke S
    Magn Reson Med; 2014 Apr; 71(4):1405-15. PubMed ID: 23670993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling.
    Stonebridge PA; Buckley C; Thompson A; Dick J; Hunter G; Chudek JA; Houston JG; Belch JJ
    Int Angiol; 2004 Sep; 23(3):276-83. PubMed ID: 15765044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy.
    Marlevi D; Ha H; Dillon-Murphy D; Fernandes JF; Fovargue D; Colarieti-Tosti M; Larsson M; Lamata P; Figueroa CA; Ebbers T; Nordsletten DA
    Med Image Anal; 2020 Feb; 60():101627. PubMed ID: 31865280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental analysis of the influence of stenotic geometry on steady flow.
    Liepsch D; Singh M; Lee M
    Biorheology; 1992; 29(4):419-31. PubMed ID: 1306368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Sep; 35(9):1510-24. PubMed ID: 19540655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
    Ziegler M; Lantz J; Ebbers T; Dyverfeldt P
    Magn Reson Med; 2017 Jun; 77(6):2310-2319. PubMed ID: 27350049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phase-contrast MRI.
    Binter C; Gülan U; Holzner M; Kozerke S
    Magn Reson Med; 2016 Jul; 76(1):191-6. PubMed ID: 26258402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D UTE flow: a phase-contrast MRI technique for assessment and visualization of stenotic flows.
    Kadbi M; Negahdar M; Cha JW; Traughber M; Martin P; Stoddard MF; Amini AA
    Magn Reson Med; 2015 Mar; 73(3):939-50. PubMed ID: 24604617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the accuracy of pressure measurements in vascular stenoses from phase-contrast MRI.
    Nasiraei-Moghaddam A; Behrens G; Fatouraee N; Agarwal R; Choi ET; Amini AA
    Magn Reson Med; 2004 Aug; 52(2):300-9. PubMed ID: 15282812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.