BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9771907)

  • 1. Residual dipolar couplings as new conformational restraints in isotropically 13C-enriched oligosaccharides.
    Kiddle GR; Homans SW
    FEBS Lett; 1998 Sep; 436(1):128-30. PubMed ID: 9771907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of NMR residual dipolar couplings in aqueous dilute liquid crystalline medium for conformational studies of complex oligosaccharides.
    Martin-Pastor M; Bush CA
    Carbohydr Res; 2000 Jan; 323(1-4):147-55. PubMed ID: 10782296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New conformational constraints in isotopically (13C) enriched oligosaccharides.
    Milton MJ; Harris R; Probert MA; Field RA; Homans SW
    Glycobiology; 1998 Feb; 8(2):147-53. PubMed ID: 9451024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational studies of Lewis X and Lewis A trisaccharides using NMR residual dipolar couplings.
    Azurmendi HF; Martin-Pastor M; Bush CA
    Biopolymers; 2002 Feb; 63(2):89-98. PubMed ID: 11786997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilute liquid crystals used to enhance residual dipolar couplings may alter conformational equilibrium in oligosaccharides.
    Berthault P; Jeannerat D; Camerel F; Alvarez Salgado F; Boulard Y; Gabriel JC; Desvaux H
    Carbohydr Res; 2003 Aug; 338(17):1771-85. PubMed ID: 12892944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined structure of a flexible heptasaccharide using 1H-13C and 1H-1H NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants.
    Martin-Pastor M; Bush CA
    J Biomol NMR; 2001 Feb; 19(2):125-39. PubMed ID: 11256809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational studies of human milk oligosaccharides using (1)H-(13)C one-bond NMR residual dipolar couplings.
    Martin-Pastor M; Bush CA
    Biochemistry; 2000 Apr; 39(16):4674-83. PubMed ID: 10769123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of aqueous molecular dynamics with NMR relaxation and residual dipolar couplings favors internal motion in a mannose oligosaccharide.
    Almond A; Bunkenborg J; Franch T; Gotfredsen CH; Duus JO
    J Am Chem Soc; 2001 May; 123(20):4792-802. PubMed ID: 11457289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII.
    Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T
    Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational preferences of chondroitin sulfate oligomers using partially oriented NMR spectroscopy of 13C-labeled acetyl groups.
    Yu F; Wolff JJ; Amster IJ; Prestegard JH
    J Am Chem Soc; 2007 Oct; 129(43):13288-97. PubMed ID: 17924631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational studies of blood group A and blood group B oligosaccharides using NMR residual dipolar couplings.
    Azurmendi HF; Bush CA
    Carbohydr Res; 2002 May; 337(10):905-15. PubMed ID: 12007473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface.
    Brocca P; Berthault P; Sonnino S
    Biophys J; 1998 Jan; 74(1):309-18. PubMed ID: 9449331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the magnitude of internal motion in a complex hexasaccharide.
    Ganguly S; Xia J; Margulis C; Stanwyck L; Bush CA
    Biopolymers; 2011 Jan; 95(1):39-50. PubMed ID: 20683925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR spectroscopy of nystose.
    Timmermans JW; de Waard P; Tournois H; Leeflang BR; Vliegenthart JF
    Carbohydr Res; 1993 May; 243(2):379-84. PubMed ID: 8348547
    [No Abstract]   [Full Text] [Related]  

  • 15. A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings.
    Kramer M; Kleinpeter E
    J Magn Reson; 2011 Sep; 212(1):174-85. PubMed ID: 21802325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of a tetrasaccharide based on NMR spectroscopy and molecular dynamics simulations.
    Landersjö C; Jansson JL; Maliniak A; Widmalm G
    J Phys Chem B; 2005 Sep; 109(36):17320-6. PubMed ID: 16853211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligosaccharides implicated in recognition are predicted to have relatively ordered structures.
    Almond A; Petersen BO; Duus JØ
    Biochemistry; 2004 May; 43(19):5853-63. PubMed ID: 15134459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational investigation of a cyclic enterobacterial common antigen employing NMR spectroscopy and molecular dynamics simulations.
    Staaf M; Höög C; Stevensson B; Maliniak A; Widmalm G
    Biochemistry; 2001 Mar; 40(12):3623-8. PubMed ID: 11297429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the 13C nuclear magnetic resonance spectra of trisaccharides using multiple linear regression analysis and neural networks.
    Clouser DL; Jurs PC
    Carbohydr Res; 1995 Jul; 271(1):65-77. PubMed ID: 7648583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of restrained minimization, simulated annealing and molecular dynamics simulations for the conformational analysis of oligosaccharides.
    Homans SW; Forster M
    Glycobiology; 1992 Apr; 2(2):143-51. PubMed ID: 1351413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.