These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9771914)
61. Phosphonate and alpha-fluorophosphonate analogue probes of the ionization state of pyridoxal 5'-phosphate (PLP) in glycogen phosphorylase. Stirtan WG; Withers SG Biochemistry; 1996 Nov; 35(47):15057-64. PubMed ID: 8942672 [TBL] [Abstract][Full Text] [Related]
62. Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian D-amino acid oxidase. Hamilton GA; Buckthal DJ; Mortensen RM; Zerby KW Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2625-9. PubMed ID: 37501 [TBL] [Abstract][Full Text] [Related]
63. Lack of stringent stereospecificity in the inactivation of pyridoxal phosphate-dependent enzymes by suicide-substrates. Danzin C; Jung MJ Prog Clin Biol Res; 1984; 144A():377-85. PubMed ID: 6728852 [No Abstract] [Full Text] [Related]
64. Thiazolidine derivatives from fluorescent dithienyl-BODIPY-carboxaldehydes and cysteine. Poirel A; De Nicola A; Ziessel R J Org Chem; 2014 Dec; 79(23):11463-72. PubMed ID: 25383423 [TBL] [Abstract][Full Text] [Related]
65. Thiazolidine-2-carboxylate derivatives formed from glyoxylate and L-cysteine or L-cysteinylglycine as possible physiological substrates for D-aspartate oxidase. Burns CL; Main DE; Buckthal DJ; Hamilton GA Biochem Biophys Res Commun; 1984 Dec; 125(3):1039-45. PubMed ID: 6151397 [TBL] [Abstract][Full Text] [Related]
67. Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. Brand A; Leibfritz D; Hamprecht B; Dringen R J Neurochem; 1998 Aug; 71(2):827-32. PubMed ID: 9681475 [TBL] [Abstract][Full Text] [Related]
68. [On the reactions of D- and L-penicillamine with some aldimines of pyridoxal phosphate]. Hasenbank G; Körber F; Siegmund P Hoppe Seylers Z Physiol Chem; 1968 Mar; 349(3):310-6. PubMed ID: 5725541 [No Abstract] [Full Text] [Related]
69. Immunoblot detection of pyridoxal phosphate binding proteins in liver and hepatoma cytosolic extracts. Kittler JM; Viceps-Madore D; Cidlowski JA; Thanassi JW Biochem Biophys Res Commun; 1983 Apr; 112(1):61-5. PubMed ID: 6838620 [TBL] [Abstract][Full Text] [Related]
70. 31P nuclear magnetic resonance studies of glycogen phosphorylase from rabbit skeletal muscle: ionization states of pyridoxal 5'-phosphate. Feldmann K; Hull WE Proc Natl Acad Sci U S A; 1977 Mar; 74(3):856-60. PubMed ID: 15256 [TBL] [Abstract][Full Text] [Related]
71. Isolation and characterization of D-threonine aldolase, a pyridoxal-5'-phosphate-dependent enzyme from Arthrobacter sp. DK-38. Kataoka M; Ikemi M; Morikawa T; Miyoshi T; Nishi K; Wada M; Yamada H; Shimizu S Eur J Biochem; 1997 Sep; 248(2):385-93. PubMed ID: 9346293 [TBL] [Abstract][Full Text] [Related]
72. Formation of phenol and thiocatechol metabolites from bromobenzene premercapturic acids through pyridoxal phosphate-dependent C-S lyase activity. Lertratanangkoon K; Denney D Biochem Pharmacol; 1993 Jun; 45(12):2513-25. PubMed ID: 8328989 [TBL] [Abstract][Full Text] [Related]
73. Chemical, Analytical and Pharmacokinetic Characterisation of RO7304898, an API Consisting of Two Rapidly Interconverting Diastereoisomers. Heinig K; Sladojevich F; Petrig Schaffland J; Jaeschke G; Ross A; Koldewey P; Miladinović SM; Wang J; Rynn C Pharm Res; 2022 Apr; 39(4):653-667. PubMed ID: 35338426 [TBL] [Abstract][Full Text] [Related]
74. Mechanistic Studies on Thiazolidine Formation in Aldehyde/Cysteamine Model Systems. Huang TC; Huang LZ; Ho CT J Agric Food Chem; 1998 Jan; 46(1):224-227. PubMed ID: 10554223 [TBL] [Abstract][Full Text] [Related]
75. Mechanistic Studies on the Formation of Thiazolidine and Structurally Related Thiazines in a Cysteamine/2,3-Butanedione Model System. Huang TC; Su YM; Ho CT J Agric Food Chem; 1998 Feb; 46(2):664-667. PubMed ID: 10554295 [TBL] [Abstract][Full Text] [Related]
76. HPLC-MS/MS based method for the determination of 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid in human plasma. Gaweł M; Głowacki R; Kubalczyk P; Piechocka J Sci Rep; 2024 Oct; 14(1):24425. PubMed ID: 39424903 [TBL] [Abstract][Full Text] [Related]
77. Simultaneous determination of 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid and main plasma aminothiols by HPLC-UV based method. Piechocka J; Wyszczelska-Rokiel M; Głowacki R Sci Rep; 2023 Jun; 13(1):9294. PubMed ID: 37286735 [TBL] [Abstract][Full Text] [Related]
78. Cystine rather than cysteine is the preferred substrate for β-elimination by cystathionine γ-lyase: implications for dietary methionine restriction. Jeitner TM; Azcona JA; Ables GP; Cooke D; Horowitz MC; Singh P; Kelly JM; Cooper AJL Geroscience; 2024 Aug; 46(4):3617-3634. PubMed ID: 37217633 [TBL] [Abstract][Full Text] [Related]
79. Cysteamine Inhibits Glycine Utilisation and Disrupts Virulence in Fraser-Pitt DJ; Dolan SK; Toledo-Aparicio D; Hunt JG; Smith DW; Lacy-Roberts N; Nupe Hewage PS; Stoyanova TN; Manson E; McClean K; Inglis NF; Mercer DK; O'Neil DA Front Cell Infect Microbiol; 2021; 11():718213. PubMed ID: 34631600 [No Abstract] [Full Text] [Related]
80. 2-(3-Hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic Acid, Novel Metabolite of Pyridoxal 5'-Phosphate and Cysteine Is Present in Human Plasma-Chromatographic Investigations. Piechocka J; Wrońska M; Głowacka IE; Głowacki R Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32443403 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]