BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9772129)

  • 1. Early weaning induces jejunal ornithine decarboxylase and cell proliferation in neonatal rats.
    Lin CH; Correia L; Tolia K; Gesell MS; Tolia V; Lee PC; Luk GD
    J Nutr; 1998 Oct; 128(10):1636-42. PubMed ID: 9772129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of gastric ornithine decarboxylase in early weaning rats.
    Lin CH; Lyons H; Seelbach MS; Tolia V; Vijesurier R
    Digestion; 2001; 63(4):214-9. PubMed ID: 11435720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lingual factors enhance the increase of ornithine decarboxylase activity in rat jejunal mucosa after feeding.
    Matsunaga C; Fujimoto K; Iwakiri R; Koyama T; Ogata S; Gotoh Y; Matsuo S; Sakai T
    Metabolism; 1996 Oct; 45(10):1284-7. PubMed ID: 8843186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of intestinal ornithine decarboxylase during postnatal development in neonatal rats.
    Lin CH; Vijesurier R; Ho YS; Schipper RG; Tolia V; Moshier JA; Majumdar AP
    Biochim Biophys Acta; 2002 May; 1589(3):298-304. PubMed ID: 12031796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical role of adrenal glands in precocious increase in jejunal sucrase activity following premature weaning in rats: negligible effect of food intake.
    Boyle JT; Koldovský O
    J Nutr; 1980 Jan; 110(1):169-77. PubMed ID: 6766500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated maternal separation in the neonatal rat: cellular mechanisms contributing to brain growth sparing.
    Lau C; Cameron AM; Antolick LL; Stanton ME
    J Dev Physiol; 1992 Jun; 17(6):265-76. PubMed ID: 1289389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tyrosine kinase, ODC, and p34cdc2 kinase and cyclin B-associated cdc2 in jejunal enterocyte proliferation, maturation, and exfoliation in diabetic and DFMO-treated rats.
    Parekh VV; Hoffman JL; Younoszai MK
    J Investig Med; 1999 Sep; 47(8):397-404. PubMed ID: 10510592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous corticosterone rather than dietary sucrose as a modulator for intestinal sucrase activity in artificially reared rat pups.
    Yeh KY; Du FW; Holt PR
    J Nutr; 1986 Jul; 116(7):1334-42. PubMed ID: 3528429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of milk-borne factors in weaning and intestinal development.
    Henning SJ
    Biol Neonate; 1982; 41(5-6):265-72. PubMed ID: 7104413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ornithine decarboxylase activity in rat intestinal mucosa and liver is stimulated by central administration of 2-deoxy-D-glucose but not of 2,5-anhydro-D-mannitol.
    Morita H; Fujimoto K; Sakata T; Kurokawa M; Yoshimatsu H; Noda T; Iwakiri R; Sakai T
    Brain Res; 1996 May; 719(1-2):112-6. PubMed ID: 8782870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of dietary iron in maturation of rat small intestine at weaning.
    Buts JP; Delacroix DL; Dekeyser N; Paquet S; Horsmans Y; Boelens M; Van Craynest MP; De Meyer R
    Am J Physiol; 1984 Jun; 246(6 Pt 1):G725-31. PubMed ID: 6742122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early response of ornithine decarboxylase activity and energy metabolism to postsurgery refeeding in rat small intestine.
    Yang H; Wirén M; Permert J; Söderholm J; Braaf Y; Larsson J
    Clin Nutr; 1999 Feb; 18(1):41-5. PubMed ID: 10459084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the circadian rhythm of jejunal sucrase activity in the weanling rat.
    Beam HE; Henning SJ
    Am J Physiol; 1978 Oct; 235(4):E437-42. PubMed ID: 696865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive response of ileal mucosa to malnutrition in the rat: role of polyamines.
    Jonas A; Diver-Haber A; Yahav J
    Acta Physiol Scand; 1991 Jul; 142(3):387-95. PubMed ID: 1927551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-protein-based enteral formula stimulates intestinal ornithine decarboxylase activity more than single amino acids but does not affect mucosal adenosine triphosphate content in early postsurgical refeeding.
    Yang H; Wirén M; Larsson J; Permert J
    JPEN J Parenter Enteral Nutr; 1999; 23(4):207-12. PubMed ID: 10421389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ornithine decarboxylase activity in fetal and newborn rat brain: responses to hypoxic and carbon monoxide hypoxia.
    Packianathan S; Cain CD; Stagg RB; Longo LD
    Brain Res Dev Brain Res; 1993 Nov; 76(1):131-40. PubMed ID: 8306425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute hypoxia induces elevation of ornithine decarboxylase activity in neonatal rat brain slices.
    Longo LD; Packianathan S
    Reprod Fertil Dev; 1995; 7(3):385-9. PubMed ID: 8606947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic lipid hydroperoxide stress suppresses mucosal proliferation in rat intestine: potentiation of ornithine decarboxylase activity by epidermal growth factor.
    Tsunada S; Iwakiri R; Fujimoto K; Aw TY
    Dig Dis Sci; 2003 Dec; 48(12):2333-41. PubMed ID: 14714622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdiaphragmatic vagotomy abolishes increase in ornithine decarboxylase activity of rat duodenal mucosa after ischemia-reperfusion in superior mesenteric artery.
    Mori H; Iwakiri R; Tanaka J; Hirano M; Koyama T; Sakata H; Fujimoto K
    Gastroenterol Jpn; 1993 Aug; 28(4):505-10. PubMed ID: 8375623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis.
    Ulrich-Baker MG; Wang P; Fitzpatrick L; Johnson LR
    Am J Physiol; 1988 Mar; 254(3 Pt 1):G408-15. PubMed ID: 3348406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.