These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion. Kulma M; Kacprzyk-Stokowiec A; Kwiatkowska K; Traczyk G; Sobota A; Dadlez M Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1075-1088. PubMed ID: 28263714 [TBL] [Abstract][Full Text] [Related]
5. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Ramachandran R; Heuck AP; Tweten RK; Johnson AE Nat Struct Biol; 2002 Nov; 9(11):823-7. PubMed ID: 12368903 [TBL] [Abstract][Full Text] [Related]
6. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers. Moe PC; Heuck AP Biochemistry; 2010 Nov; 49(44):9498-507. PubMed ID: 20886855 [TBL] [Abstract][Full Text] [Related]
7. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
8. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942 [TBL] [Abstract][Full Text] [Related]
9. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study. Kacprzyk-Stokowiec A; Kulma M; Traczyk G; Kwiatkowska K; Sobota A; Dadlez M J Biol Chem; 2014 Oct; 289(41):28738-52. PubMed ID: 25164812 [TBL] [Abstract][Full Text] [Related]
10. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition. Kulma M; Kacprzyk-Stokowiec A; Traczyk G; Kwiatkowska K; Dadlez M Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):110-122. PubMed ID: 30463694 [TBL] [Abstract][Full Text] [Related]
11. Interaction of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion. Nakamura M; Sekino N; Iwamoto M; Ohno-Iwashita Y Biochemistry; 1995 May; 34(19):6513-20. PubMed ID: 7756282 [TBL] [Abstract][Full Text] [Related]
12. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase. Jittikoon J; East JM; Lee AG Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884 [TBL] [Abstract][Full Text] [Related]
13. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Raja SM; Rawat SS; Chattopadhyay A; Lala AK Biophys J; 1999 Mar; 76(3):1469-79. PubMed ID: 10049328 [TBL] [Abstract][Full Text] [Related]
14. Photolabeling of a pore-forming toxin with the hydrophobic probe 2-[3H]diazofluorene. Identification of membrane-inserted segments of Staphylococcus aureus alpha-toxin. Lala AK; Raja SM J Biol Chem; 1995 May; 270(19):11348-57. PubMed ID: 7744772 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer. Du J; Knowles BH; Li J; Ellar DJ Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):185-93. PubMed ID: 9931315 [TBL] [Abstract][Full Text] [Related]
16. Cloning and expression in Escherichia coli of the perfringolysin O (theta-toxin) gene from Clostridium perfringens and characterization of the gene product. Tweten RK Infect Immun; 1988 Dec; 56(12):3228-34. PubMed ID: 2903127 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis? Savinov SN; Heuck AP Toxins (Basel); 2017 Nov; 9(12):. PubMed ID: 29168745 [TBL] [Abstract][Full Text] [Related]
18. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin. Burns JR; Morton CJ; Parker MW; Tweten RK mBio; 2019 Jul; 10(4):. PubMed ID: 31266869 [TBL] [Abstract][Full Text] [Related]
19. Kinetic aspects of the aggregation of Clostridium perfringens theta-toxin on erythrocyte membranes. A fluorescence energy transfer study. Harris RW; Sims PJ; Tweten RK J Biol Chem; 1991 Apr; 266(11):6936-41. PubMed ID: 2016307 [TBL] [Abstract][Full Text] [Related]
20. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. Nelson LD; Johnson AE; London E J Biol Chem; 2008 Feb; 283(8):4632-42. PubMed ID: 18089559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]