These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9772187)

  • 1. Identification and characterization of kinetically competent carbinolamine and alpha-iminoglutarate complexes in the glutamate dehydrogenase-catalyzed oxidation of L-glutamate using a multiwavelength transient state approach.
    Maniscalco SJ; Saha SK; Fisher HF
    Biochemistry; 1998 Oct; 37(41):14585-90. PubMed ID: 9772187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic interpretation of tryptophan fluorescence quenching in the time courses of glutamate dehydrogenase catalyzed reactions.
    Saha SK; Maniscalco SJ; Fisher HF
    Biochemistry; 1996 Dec; 35(51):16483-8. PubMed ID: 8987981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of noncovalent intermediates in enzymatically catalyzed reactions.
    Fisher HF; Maniscalco SJ; Tally J
    Biochem Biophys Res Commun; 2001 Sep; 287(2):343-7. PubMed ID: 11554732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of multiple active site domain motions in transient-state component time courses of the Clostridium symbiosum L-glutamate dehydrogenase-catalyzed oxidative deamination reaction.
    Tally JF; Maniscalco SJ; Saha SK; Fisher HF
    Biochemistry; 2002 Sep; 41(37):11284-93. PubMed ID: 12220195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A difference in the sequence of steps in the reactions catalyzed by two closely homologous forms of glutamate dehydrogenase.
    Maniscalco SJ; Saha SK; Vicedomine P; Fisher HF
    Biochemistry; 1996 Jan; 35(1):89-94. PubMed ID: 8555203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of multiwavelength kinetic analysis approach to identify and characterize intermediate complexes in the reductive amination reaction catalyzed by bovine liver glutamate dehydrogenase.
    Saha SK; Maniscalco SJ; Fisher HF
    Biochim Biophys Acta; 1998 Jan; 1382(1):8-12. PubMed ID: 9507051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonyl oxygen exchange evidence of imine formation in the glutamate dehydrogenase reaction and identification of the "occult role" of NADPH.
    Fisher HF; Viswanathan TS
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2747-51. PubMed ID: 6144102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible reduction of an alpha-imino acid to an alpha-amino acid catalyzed by glutamate dehydrogenase: effect of ionizable functional groups.
    Srinivasan R; Fisher HF
    Biochemistry; 1985 Jan; 24(3):618-22. PubMed ID: 3994979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the 2-iminoglutarate-bound complex of glutamate dehydrogenase from Corynebacterium glutamicum.
    Tomita T; Yin L; Nakamura S; Kosono S; Kuzuyama T; Nishiyama M
    FEBS Lett; 2017 Jun; 591(11):1611-1622. PubMed ID: 28486765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of ox liver glutamate dehydrogenase activity by coenzymes].
    Popova SV; Sugrobova NP
    Biokhimiia; 1983 Nov; 48(11):1783-7. PubMed ID: 6661450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The demonstration of a glutamate dehydrogenase-NADP-L-glutamate charge-transfer complex and its location on the reaction pathway.
    Saha SK; Maniscalco SJ; Singh N; Fisher HF
    J Biol Chem; 1994 Nov; 269(47):29592-7. PubMed ID: 7961946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of formation of bound alpha-iminoglutarate from alpha-ketoglutarate in the glutamate dehydrogenase reaction. A chemical basis for ammonia recognition.
    Srinivasan R; Viswanathan TS; Fisher HF
    J Biol Chem; 1988 Feb; 263(5):2304-8. PubMed ID: 3339011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive inhibition of glutamate dehydrogenase reaction.
    Choudhury R; Punekar NS
    FEBS Lett; 2007 Jun; 581(14):2733-6. PubMed ID: 17531979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The real-time resolution of proton-related transient-state steps in an enzymatic reaction. The early steps in the oxidative deamination reaction of bovine liver glutamate dehydrogenase.
    Singh N; Maniscalco SJ; Fisher HF
    J Biol Chem; 1993 Jan; 268(1):21-8. PubMed ID: 8093240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of alpha-ketoglutarate dehydrogenase during its enzymatic reaction.
    Bunik VI; Pavlova OG
    Biochemistry (Mosc); 1997 Sep; 62(9):973-82. PubMed ID: 9527444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-time course studies of bovine liver glutamate dehydrogenase. Simulation of inhibition by pyridoxal-5'-phosphate.
    Bedino S
    Ital J Biochem; 1976; 25(4):304-19. PubMed ID: 11196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient-state kinetic approach to mechanisms of enzymatic catalysis.
    Fisher HF
    Acc Chem Res; 2005 Mar; 38(3):157-66. PubMed ID: 15766234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient-state kinetics of L-glutamate dehydrogenase: mechanism of alpha-ketoglutarate inhibition in the burst phase.
    Colen AH
    Biochemistry; 1978 Feb; 17(3):528-33. PubMed ID: 563727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The direct measurement of thermodynamic parameters of reactive transient intermediates of the L-glutamate dehydrogenase reaction.
    Maniscalco SJ; Tally JF; Harris SW; Fisher HF
    J Biol Chem; 2003 May; 278(18):16129-34. PubMed ID: 12578821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.