BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

643 related articles for article (PubMed ID: 9772190)

  • 1. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding.
    Kentsis A; Sosnick TR
    Biochemistry; 1998 Oct; 37(41):14613-22. PubMed ID: 9772190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding.
    Krantz BA; Moran LB; Kentsis A; Sosnick TR
    Nat Struct Biol; 2000 Jan; 7(1):62-71. PubMed ID: 10625430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscosity dependence of the folding kinetics of a dimeric and monomeric coiled coil.
    Bhattacharyya RP; Sosnick TR
    Biochemistry; 1999 Feb; 38(8):2601-9. PubMed ID: 10029555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinterpretation of GCN4-p1 folding kinetics: partial helix formation precedes dimerization in coiled coil folding.
    Myers JK; Oas TG
    J Mol Biol; 1999 Jun; 289(2):205-9. PubMed ID: 10366499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops.
    Taylor JW; Greenfield NJ; Wu B; Privalov PL
    J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a trifluoroethanol-induced partially folded state of alpha-lactalbumin.
    Alexandrescu AT; Ng YL; Dobson CM
    J Mol Biol; 1994 Jan; 235(2):587-99. PubMed ID: 8289283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct analysis of backbone-backbone hydrogen bond formation in protein folding transition states.
    Yang X; Wang M; Fitzgerald MC
    J Mol Biol; 2006 Oct; 363(2):506-19. PubMed ID: 16963082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilisation of alpha-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding.
    Taddei N; Chiti F; Fiaschi T; Bucciantini M; Capanni C; Stefani M; Serrano L; Dobson CM; Ramponi G
    J Mol Biol; 2000 Jul; 300(3):633-47. PubMed ID: 10884358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does trifluoroethanol affect folding pathways and can it be used as a probe of structure in transition states?
    Main ER; Jackson SE
    Nat Struct Biol; 1999 Sep; 6(9):831-5. PubMed ID: 10467094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil.
    Krantz BA; Sosnick TR
    Nat Struct Biol; 2001 Dec; 8(12):1042-7. PubMed ID: 11694889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trifluoroethanol stabilizes the pH 4 folding intermediate of sperm whale apomyoglobin.
    Luo Y; Baldwin RL
    J Mol Biol; 1998 May; 279(1):49-57. PubMed ID: 9636699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic evidence for backbone desolvation of helical peptides by 2,2,2-trifluoroethanol: an isotope-edited FTIR study.
    Starzyk A; Barber-Armstrong W; Sridharan M; Decatur SM
    Biochemistry; 2005 Jan; 44(1):369-76. PubMed ID: 15628879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt-bridges can stabilize but do not accelerate the folding of the homodimeric coiled-coil peptide GCN4-p1.
    Ibarra-Molero B; Zitzewitz JA; Matthews CR
    J Mol Biol; 2004 Mar; 336(5):989-96. PubMed ID: 15037063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helix capping in the GCN4 leucine zipper.
    Lu M; Shu W; Ji H; Spek E; Wang L; Kallenbach NR
    J Mol Biol; 1999 May; 288(4):743-52. PubMed ID: 10329176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2,2,2-Trifluoroethanol induces helical conformation in an all beta-sheet protein.
    Jayaraman G; Kumar TK; Arunkumar AI; Yu C
    Biochem Biophys Res Commun; 1996 May; 222(1):33-7. PubMed ID: 8630070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).
    Jelesarov I; Dürr E; Thomas RM; Bosshard HR
    Biochemistry; 1998 May; 37(20):7539-50. PubMed ID: 9585569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are trigger sequences essential in the folding of two-stranded alpha-helical coiled-coils?
    Lee DL; Lavigne P; Hodges RS
    J Mol Biol; 2001 Feb; 306(3):539-53. PubMed ID: 11178912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence concerning rate-limiting steps in protein folding from the effects of trifluoroethanol.
    Hamada D; Chiti F; Guijarro JI; Kataoka M; Taddei N; Dobson CM
    Nat Struct Biol; 2000 Jan; 7(1):58-61. PubMed ID: 10625429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.