These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9772239)

  • 1. Intermittency in preplanned elbow movements persists in the absence of visual feedback.
    Doeringer JA; Hogan N
    J Neurophysiol; 1998 Oct; 80(4):1787-99. PubMed ID: 9772239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cerebellar motor disorders by visually-guided elbow tracking movement. 2. Contribution of the visual cues on slow ramp pursuit.
    Beppu H; Nagaoka M; Tanaka R
    Brain; 1987 Feb; 110 ( Pt 1)():1-18. PubMed ID: 3801845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast, accurate reaching movements with a visual-to-auditory sensory substitution device.
    Levy-Tzedek S; Hanassy S; Abboud S; Maidenbaum S; Amedi A
    Restor Neurol Neurosci; 2012; 30(4):313-23. PubMed ID: 22596353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of vision and proprioception to arm movement planning in the vertical plane.
    Apker GA; Karimi CP; Buneo CA
    Neurosci Lett; 2011 Oct; 503(3):186-90. PubMed ID: 21889576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback.
    Levy-Tzedek S; Ben Tov M; Karniel A
    J Neurophysiol; 2011 Nov; 106(5):2120-6. PubMed ID: 21813746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic and EMG characteristics of simple shoulder movements with proprioception and visual feedback.
    Brindle TJ; Nitz AJ; Uhl TL; Kifer E; Shapiro R
    J Electromyogr Kinesiol; 2006 Jun; 16(3):236-49. PubMed ID: 16111896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of overlapping submovements in the control of rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2002 Jun; 144(3):351-64. PubMed ID: 12021817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humans use continuous visual feedback from the hand to control fast reaching movements.
    Saunders JA; Knill DC
    Exp Brain Res; 2003 Oct; 152(3):341-52. PubMed ID: 12904935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is proprioception calibrated during visually guided movements?
    Bernier PM; Chua R; Franks IM
    Exp Brain Res; 2005 Nov; 167(2):292-6. PubMed ID: 16044301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
    Morrison CS; Knudson D; Clayburn C; Haywood P
    Percept Mot Skills; 2005 Jun; 100(3 Pt 1):599-606. PubMed ID: 16060418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of online visual feedback for the control of target-directed and allocentric hand movements.
    Thaler L; Goodale MA
    J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of changed visual feedback on intention tremor in multiple sclerosis.
    Feys P; Helsen W; Buekers M; Ceux T; Heremans E; Nuttin B; Ketelaer P; Liu X
    Neurosci Lett; 2006 Feb; 394(1):17-21. PubMed ID: 16257487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand preshaping in Parkinson's disease: effects of visual feedback and medication state.
    Schettino LF; Adamovich SV; Hening W; Tunik E; Sage J; Poizner H
    Exp Brain Res; 2006 Jan; 168(1-2):186-202. PubMed ID: 16041510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
    Bastian AJ; Martin TA; Keating JG; Thach WT
    J Neurophysiol; 1996 Jul; 76(1):492-509. PubMed ID: 8836239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the amplitude and direction of goal-directed hand movements in the lack of visual information.
    Angyán L; Téczely T; Angyán Z; Petofi A
    Acta Physiol Hung; 2006 Jun; 93(2-3):107-16. PubMed ID: 17063622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aging on pointing movements under restricted visual feedback conditions.
    Zhang L; Yang J; Inai Y; Huang Q; Wu J
    Hum Mov Sci; 2015 Apr; 40():1-13. PubMed ID: 25506638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the similarities between the perception and production of elliptical trajectories.
    Levit-Binnun N; Schechtman E; Flash T
    Exp Brain Res; 2006 Jul; 172(4):533-55. PubMed ID: 16501963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.