These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 977313)

  • 1. A study of the interface between bone and acrylic cement by scanning electron microscopy.
    Spinelli R
    Ital J Orthop Traumatol; 1976 Apr; 2(1):103-15. PubMed ID: 977313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of weight-bearing on bone-bonding behavior of strontium-containing hydroxyapatite bone cement.
    Ni GX; Lu WW; Tang B; Ngan AH; Chiu KY; Cheung KM; Li ZY; Luk KD
    J Biomed Mater Res A; 2007 Nov; 83(2):570-6. PubMed ID: 17607756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface modification of polymer beads on the mechanical properties of acrylic bone cement.
    Shafranska O; Kokott A; Sülthaus D; Ziegler G
    J Biomater Sci Polym Ed; 2007; 18(4):439-51. PubMed ID: 17540118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Acrylic cement-antibiotic mixtures in vivo: a scanning electron microscopic study with microanalysis].
    Santucci A; Greco F; De Palma L; Caneva C
    Arch Putti Chir Organi Mov; 1985; 35():101-8. PubMed ID: 3843017
    [No Abstract]   [Full Text] [Related]  

  • 5. Adhesive bone cement containing hydroxyapatite particle as bone compatible filler.
    Ishihara K; Arai H; Nakabayashi N; Morita S; Furuya K
    J Biomed Mater Res; 1992 Jul; 26(7):937-45. PubMed ID: 1607374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of failure characteristics of a range of cancellous bone-bone cement composites.
    Lucksanasombool P; Higgs WA; Ignat M; Higgs RJ; Swain MV
    J Biomed Mater Res A; 2003 Jan; 64(1):93-104. PubMed ID: 12483701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent.
    Kotha SP; Lieberman M; Vickers A; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2006 Jan; 76(1):111-9. PubMed ID: 16224777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [An experimental study of the process of bony ingrowth into inorganic bone-particle impregnated bone cement].
    Dai KR
    Zhonghua Wai Ke Za Zhi; 1992 Oct; 30(10):588-9, 635. PubMed ID: 1306789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength of the cement-bone interface.
    Krause WR; Krug W; Miller J
    Clin Orthop Relat Res; 1982 Mar; (163):290-9. PubMed ID: 7067264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of the interface between titanium and surrounding tissue in rat tibiae--a comparison study on titanium-coated and -uncoated plastic implants.
    Okamatsu K; Kido H; Sato A; Watazu A; Matsuura M
    Clin Implant Dent Relat Res; 2007 Jun; 9(2):100-11. PubMed ID: 17535334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive bone cement: the effect of amounts of glass powder and histologic changes with time.
    Tamura J; Kawanabe K; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S; Shibuya T
    J Biomed Mater Res; 1995 May; 29(5):551-9. PubMed ID: 7622540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model.
    Ni GX; Choy YS; Lu WW; Ngan AH; Chiu KY; Li ZY; Tang B; Luk KD
    Biomaterials; 2006 Mar; 27(9):1963-70. PubMed ID: 16226309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of bleeding on the cement-bone interface. An experimental study.
    Majkowski RS; Bannister GC; Miles AW
    Clin Orthop Relat Res; 1994 Feb; (299):293-7. PubMed ID: 8119032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.
    Karp JM; Shoichet MS; Davies JE
    J Biomed Mater Res A; 2003 Feb; 64(2):388-96. PubMed ID: 12522827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies.
    Kwon SY; Kim YS; Woo YK; Kim SS; Park JB
    Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microscopic anatomy of the bone-cement interface in failed total hip arthroplasties.
    Johanson NA; Bullough PG; Wilson PD; Salvati EA; Ranawat CS
    Clin Orthop Relat Res; 1987 May; (218):123-35. PubMed ID: 3568472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penetration and shear strength of cement-bone interfaces in vivo.
    MacDonald W; Swarts E; Beaver R
    Clin Orthop Relat Res; 1993 Jan; (286):283-8. PubMed ID: 8425359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel multiphase anodic spark deposition coating for the improvement of orthopedic implant osseointegration: an experimental study in cortical bone of sheep.
    Giavaresi G; Fini M; Chiesa R; Giordano C; Sandrini E; Bianchi AE; Ceribelli P; Giardino R
    J Biomed Mater Res A; 2008 Jun; 85(4):1022-31. PubMed ID: 17926330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of bone and hydroxyapatite filled 4-META/MMA-TBB bone cement in in vitro and in vivo environments.
    Lee RR
    J Philipp Dent Assoc; 1996; 48(1):5-12. PubMed ID: 9462058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy.
    Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.