These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 9773352)

  • 1. Regression analysis of multiple protein structures.
    Wu TD; Schmidler SC; Hastie T; Brutlag DL
    J Comput Biol; 1998; 5(3):585-95. PubMed ID: 9773352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and superposition of multiple protein structures using affine transformations: analysis of the globins.
    Wu TD; Schmidler SC; Hastie T; Brutlag DL
    Pac Symp Biocomput; 1998; ():509-20. PubMed ID: 9697208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a measure of structural variation to define a core for the globins.
    Gerstein M; Altman RB
    Comput Appl Biosci; 1995 Dec; 11(6):633-44. PubMed ID: 8808580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible protein sequence patterns. A sensitive method to detect weak structural similarities.
    Barton GJ; Sternberg MJ
    J Mol Biol; 1990 Mar; 212(2):389-402. PubMed ID: 2319605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding an average core structure: application to the globins.
    Altman RB; Gerstein M
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():19-27. PubMed ID: 7584390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MUSTA--a general, efficient, automated method for multiple structure alignment and detection of common motifs: application to proteins.
    Leibowitz N; Nussinov R; Wolfson HJ
    J Comput Biol; 2001; 8(2):93-121. PubMed ID: 11454300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLEXS: a method for fast flexible ligand superposition.
    Lemmen C; Lengauer T; Klebe G
    J Med Chem; 1998 Nov; 41(23):4502-20. PubMed ID: 9804690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling microdomains: the surface area of globin helices.
    Weaver DL
    Proteins; 1992 Aug; 13(4):327-35. PubMed ID: 1518802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MUSTANG: a multiple structural alignment algorithm.
    Konagurthu AS; Whisstock JC; Stuckey PJ; Lesk AM
    Proteins; 2006 Aug; 64(3):559-74. PubMed ID: 16736488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Smith-Waterman residue match seeding for protein structural alignment.
    Topham CM; Rouquier M; Tarrat N; André I
    Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing programs for rigid-body multiple structural superposition of proteins.
    Hill AD; Reilly PJ
    Proteins; 2006 Jul; 64(1):219-26. PubMed ID: 16568449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods.
    Martin J; Letellier G; Marin A; Taly JF; de Brevern AG; Gibrat JF
    BMC Struct Biol; 2005 Sep; 5():17. PubMed ID: 16164759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A method of calculating the discrete secondary structures of globular proteins].
    Solov'ev VV; Salamov VV
    Mol Biol (Mosk); 1991; 25(3):810-24. PubMed ID: 1944262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming.
    Sali A; Blundell TL
    J Mol Biol; 1990 Mar; 212(2):403-28. PubMed ID: 2181150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pairwise and multiple identification of three-dimensional common substructures in proteins.
    Escalier V; Pothier J; Soldano H; Viari A
    J Comput Biol; 1998; 5(1):41-56. PubMed ID: 9541870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the multiple simultaneous superposition of molecular structures by rigid body transformations.
    Diamond R
    Protein Sci; 1992 Oct; 1(10):1279-87. PubMed ID: 1303746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional solution structure and backbone dynamics of a variant of human interleukin-3.
    Feng Y; Klein BK; McWherter CA
    J Mol Biol; 1996 Jun; 259(3):524-41. PubMed ID: 8676386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing conserved structural contacts by pair-wise relative contacts and relative packing groups.
    Holmes JB; Tsai J
    J Mol Biol; 2005 Dec; 354(3):706-21. PubMed ID: 16269154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive combinatorial algorithm for multiple structural alignments: application to distantly related proteins.
    OchagavĂ­a ME; Wodak S
    Proteins; 2004 May; 55(2):436-54. PubMed ID: 15048834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations.
    Sippl MJ; Weitckus S
    Proteins; 1992 Jul; 13(3):258-71. PubMed ID: 1603814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.