These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9773686)

  • 1. MAVIS: a non-invasive instrument to measure area and volume of wounds. Measurement of Area and Volume Instrument System.
    Plassmann P; Jones TD
    Med Eng Phys; 1998 Jul; 20(5):332-8. PubMed ID: 9773686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods of measuring wound size: a comparative study.
    Plassmann P; Melhuish JM; Harding KG
    Ostomy Wound Manage; 1994 Sep; 40(7):50-2, 54, 56-60. PubMed ID: 7546091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-invasive, three-dimensional, diagnostic laser imaging system for accurate wound analysis.
    Patete PV; Bulgrin JP; Shabani MM; Smith DJ
    Physiol Meas; 1996 May; 17(2):71-9. PubMed ID: 8724519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating accuracy and reliability of active stereophotogrammetry using MAVIS III Wound Camera for three-dimensional assessment of hypertrophic scars.
    Su S; Sinha S; Gabriel V
    Burns; 2017 Sep; 43(6):1263-1270. PubMed ID: 28363664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional laser imaging system for measuring wound geometry.
    Smith RB; Rogers B; Tolstykh GP; Walsh NE; Davis MG; Bunegin L; Williams RL
    Lasers Surg Med; 1998; 23(2):87-93. PubMed ID: 9738543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handheld 3-dimensional wound measuring system.
    Pavlovčič U; Jezeršek M
    Skin Res Technol; 2018 May; 24(2):326-333. PubMed ID: 29377336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of techniques used to measure wound area and volume.
    Little C; McDonald J; Jenkins MG; McCarron P
    J Wound Care; 2009 Jun; 18(6):250-3. PubMed ID: 19661849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of computer-assisted and manual wound size measurement.
    Thawer HA; Houghton PE; Woodbury MG; Keast D; Campbell K
    Ostomy Wound Manage; 2002 Oct; 48(10):46-53. PubMed ID: 12378003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of three-dimensional wound measurements using a novel 3D-WAM camera.
    Jørgensen LB; Skov-Jeppesen SM; Halekoh U; Rasmussen BS; Sørensen JA; Jemec GBE; Yderstraede KB
    Wound Repair Regen; 2018 Nov; 26(6):456-462. PubMed ID: 30118155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of a new laser beam wound camera and a digital photoplanimetry-based method for wound measurement in horses.
    Van Hecke LL; De Mil TA; Haspeslagh M; Chiers K; Martens AM
    Vet J; 2015 Mar; 203(3):309-14. PubMed ID: 25665920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reliability of a handheld wound measurement and documentation device in clinical practice.
    Hammond CE; Nixon MA
    J Wound Ostomy Continence Nurs; 2011; 38(3):260-4. PubMed ID: 21483270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional documentation of wound healing: first results of a new objective method for measurement.
    Körber A; Rietkötter J; Grabbe S; Dissemond J
    J Dtsch Dermatol Ges; 2006 Oct; 4(10):848-54. PubMed ID: 17010174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of wound healing by image analysis.
    Ozturk C; Nissannov J; Dubin S; Shi WY; Nichols J; Mark R
    Biomed Sci Instrum; 1995; 31():189-93. PubMed ID: 7654960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of the accuracy and usability of a novel optical wound measurement system.
    Bowling FL; King L; Fadavi H; Paterson JA; Preece K; Daniel RW; Matthews DJ; Boulton AJ
    Diabet Med; 2009 Jan; 26(1):93-6. PubMed ID: 19125768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of electronic versus manual wound measurement techniques.
    Haghpanah S; Bogie K; Wang X; Banks PG; Ho CH
    Arch Phys Med Rehabil; 2006 Oct; 87(10):1396-402. PubMed ID: 17023252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Evaluation of Portable Wound Volumetric Measurement Devices.
    Chiang N; Rodda OA; Kang A; Sleigh J; Vasudevan T
    Adv Skin Wound Care; 2018 Aug; 31(8):374-380. PubMed ID: 30028374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ways to increase precision and accuracy of wound area measurement using smart devices: Advanced app Planimator.
    Foltynski P
    PLoS One; 2018; 13(3):e0192485. PubMed ID: 29505569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development and application of the software measuring the size of injured body surface].
    Yu X
    Fa Yi Xue Za Zhi; 2000 Nov; 16(4):201-4, S1. PubMed ID: 12536965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometry: a new method for no-touch measurement of the surface and volume of ulcerous skin lesions.
    Altmeyer P; Erbler H; Krömer T; Duwe HP; Hoffmann K
    Acta Derm Venereol; 1995 May; 75(3):193-7. PubMed ID: 7653178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated Wound Assessment Using Digital Planimetry versus Three-Dimensional Cameras: Implications for Clinical Assessment.
    Williams KJ; Sounderajah V; Dharmarajah B; Thapar A; Davies AH
    Ann Vasc Surg; 2017 May; 41():235-240. PubMed ID: 28163180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.