These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9773689)

  • 41. Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements.
    Sanders JE; Daly CH
    J Rehabil Res Dev; 1993; 30(2):191-204. PubMed ID: 8035348
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical design considerations for transradial prosthetic interface: A review.
    Sang Y; Li X; Luo Y
    Proc Inst Mech Eng H; 2016 Mar; 230(3):239-50. PubMed ID: 26759485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling the interactions between a prosthetic socket, polyurethane liners and the residual limb in transtibial amputees using non-linear finite element analysis.
    Simpson G; Fisher C; Wright DK
    Biomed Sci Instrum; 2001; 37():343-7. PubMed ID: 11347414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Fast automated finite element mesh generation of residual lower limb for clinical application].
    Jiang WT; Fan YB; Pu F; Zhang M; Zheng YP; Chen JK
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):286-90. PubMed ID: 12425337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of a novel prosthetic socket: assessment of the thermal performance.
    Webber CM; Davis BL
    J Biomech; 2015 May; 48(7):1294-9. PubMed ID: 25840507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finite element modelling of an energy-storing prosthetic foot during the stance phase of transtibial amputee gait.
    Bonnet X; Pillet H; Fodé P; Lavaste F; Skalli W
    Proc Inst Mech Eng H; 2012 Jan; 226(1):70-5. PubMed ID: 22888587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite element analysis of the amputated lower limb: A systematic review and recommendations.
    Dickinson AS; Steer JW; Worsley PR
    Med Eng Phys; 2017 May; 43():1-18. PubMed ID: 28285881
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review of prosthetic interface stress investigations.
    Silver-Thorn MB; Steege JW; Childress DS
    J Rehabil Res Dev; 1996 Jul; 33(3):253-66. PubMed ID: 8823673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research.
    Sewell P; Noroozi S; Vinney J; Andrews S
    Prosthet Orthot Int; 2000 Aug; 24(2):97-107. PubMed ID: 11061196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of computational analysis with clinical measurement of stresses on a below-knee residual limb in a prosthetic socket [Medical Engineering & Physics 22 (2000):607-12].
    Paul JP
    Med Eng Phys; 2001 Sep; 23(7):519-20. PubMed ID: 11686125
    [No Abstract]   [Full Text] [Related]  

  • 51. Computer-aided design of a prosthetic socket for an above-knee amputee.
    Krouskop TA; Muilenberg AL; Doughtery DR; Winningham DJ
    J Rehabil Res Dev; 1987; 24(2):31-8. PubMed ID: 3585783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interface mechanics in external prosthetics: review of interface stress measurement techniques.
    Sanders JE
    Med Biol Eng Comput; 1995 Jul; 33(4):509-16. PubMed ID: 7475380
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact.
    Zachariah SG; Sanders JE
    J Biomech; 2000 Jul; 33(7):895-9. PubMed ID: 10831765
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D reconstruction of the structure of a residual limb for customising the design of a prosthetic socket.
    Shuxian Z; Wanhua Z; Bingheng L
    Med Eng Phys; 2005 Jan; 27(1):67-74. PubMed ID: 15604007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic interface pressure distributions of two transtibial prosthetic socket concepts.
    Dumbleton T; Buis AW; McFadyen A; McHugh BF; McKay G; Murray KD; Sexton S
    J Rehabil Res Dev; 2009; 46(3):405-15. PubMed ID: 19675992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee.
    Portnoy S; Yizhar Z; Shabshin N; Itzchak Y; Kristal A; Dotan-Marom Y; Siev-Ner I; Gefen A
    J Biomech; 2008; 41(9):1897-909. PubMed ID: 18495134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantification of Shear Stresses Within a Transtibial Prosthetic Socket.
    Schiff A; Havey R; Carandang G; Wickman A; Angelico J; Patwardhan A; Pinzur M
    Foot Ankle Int; 2014 Aug; 35(8):779-782. PubMed ID: 24850158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computer-aided socket design for trans-femoral amputees.
    Travis RP; Dewar ME
    Prosthet Orthot Int; 1993 Dec; 17(3):172-9. PubMed ID: 8134277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. State-of-the-art methods for geometric and biomechanical assessments of residual limbs: a review.
    Zheng YP; Mak AF; Leung AK
    J Rehabil Res Dev; 2001; 38(5):487-504. PubMed ID: 11732827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A finite element model to assess transtibial prosthetic sockets with elastomeric liners.
    Cagle JC; Reinhall PG; Allyn KJ; McLean J; Hinrichs P; Hafner BJ; Sanders JE
    Med Biol Eng Comput; 2018 Jul; 56(7):1227-1240. PubMed ID: 29235055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.