These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 9774278)

  • 1. Phosphorylation and activation of 13S condensin by Cdc2 in vitro.
    Kimura K; Hirano M; Kobayashi R; Hirano T
    Science; 1998 Oct; 282(5388):487-90. PubMed ID: 9774278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome condensation by a human condensin complex in Xenopus egg extracts.
    Kimura K; Cuvier O; Hirano T
    J Biol Chem; 2001 Feb; 276(8):5417-20. PubMed ID: 11136719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation.
    Kimura K; Hirano T
    Cell; 1997 Aug; 90(4):625-34. PubMed ID: 9288743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation.
    Kimura K; Rybenkov VV; Crisona NJ; Hirano T; Cozzarelli NR
    Cell; 1999 Jul; 98(2):239-48. PubMed ID: 10428035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative regulation of condensin I by CK2-mediated phosphorylation.
    Takemoto A; Kimura K; Yanagisawa J; Yokoyama S; Hanaoka F
    EMBO J; 2006 Nov; 25(22):5339-48. PubMed ID: 17066080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to compact DNA.
    Murray AW
    Science; 1998 Oct; 282(5388):425, 427. PubMed ID: 9841400
    [No Abstract]   [Full Text] [Related]  

  • 7. Analysis of the role of Aurora B on the chromosomal targeting of condensin I.
    Takemoto A; Murayama A; Katano M; Urano T; Furukawa K; Yokoyama S; Yanagisawa J; Hanaoka F; Kimura K
    Nucleic Acids Res; 2007; 35(7):2403-12. PubMed ID: 17392339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity.
    St-Pierre J; Douziech M; Bazile F; Pascariu M; Bonneil E; Sauvé V; Ratsima H; D'Amours D
    Mol Cell; 2009 May; 34(4):416-26. PubMed ID: 19481522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein.
    Hirano T; Kobayashi R; Hirano M
    Cell; 1997 May; 89(4):511-21. PubMed ID: 9160743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging.
    Bazett-Jones DP; Kimura K; Hirano T
    Mol Cell; 2002 Jun; 9(6):1183-90. PubMed ID: 12086616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin.
    Takemoto A; Kimura K; Yokoyama S; Hanaoka F
    J Biol Chem; 2004 Feb; 279(6):4551-9. PubMed ID: 14607834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis.
    Murphy LA; Sarge KD
    Biochem Biophys Res Commun; 2008 Dec; 377(3):1007-11. PubMed ID: 18977199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation.
    Schmiesing JA; Gregson HC; Zhou S; Yokomori K
    Mol Cell Biol; 2000 Sep; 20(18):6996-7006. PubMed ID: 10958694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-step model for condensin activation during mitotic chromosome condensation.
    Bazile F; St-Pierre J; D'Amours D
    Cell Cycle; 2010 Aug; 9(16):3243-55. PubMed ID: 20703077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4.
    Sutani T; Yuasa T; Tomonaga T; Dohmae N; Takio K; Yanagida M
    Genes Dev; 1999 Sep; 13(17):2271-83. PubMed ID: 10485849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual roles of the 11S regulatory subcomplex in condensin functions.
    Kimura K; Hirano T
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11972-7. PubMed ID: 11027308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells.
    Zhai L; Wang H; Tang W; Liu W; Hao S; Zeng X
    Cell Biol Int; 2011 Jul; 35(7):735-40. PubMed ID: 21395557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis.
    Hagstrom KA; Holmes VF; Cozzarelli NR; Meyer BJ
    Genes Dev; 2002 Mar; 16(6):729-42. PubMed ID: 11914278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B.
    MacCallum DE; Losada A; Kobayashi R; Hirano T
    Mol Biol Cell; 2002 Jan; 13(1):25-39. PubMed ID: 11809820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pEg7, a new Xenopus protein required for mitotic chromosome condensation in egg extracts.
    Cubizolles F; Legagneux V; Le Guellec R; Chartrain I; Uzbekov R; Ford C; Le Guellec K
    J Cell Biol; 1998 Dec; 143(6):1437-46. PubMed ID: 9852142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.