These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 9774346)
1. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. Moreira JM; Holmberg S EMBO J; 1998 Oct; 17(20):6028-38. PubMed ID: 9774346 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. Moreira JM; Holmberg S EMBO J; 1999 May; 18(10):2836-44. PubMed ID: 10329629 [TBL] [Abstract][Full Text] [Related]
3. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. Ansari SA; Paul E; Sommer S; Lieleg C; He Q; Daly AZ; Rode KA; Barber WT; Ellis LC; LaPorta E; Orzechowski AM; Taylor E; Reeb T; Wong J; Korber P; Morse RH J Biol Chem; 2014 May; 289(21):14981-95. PubMed ID: 24727477 [TBL] [Abstract][Full Text] [Related]
4. Dispersed mutations in histone H3 that affect transcriptional repression and chromatin structure of the CHA1 promoter in Saccharomyces cerevisiae. He Q; Yu C; Morse RH Eukaryot Cell; 2008 Oct; 7(10):1649-60. PubMed ID: 18658255 [TBL] [Abstract][Full Text] [Related]
5. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. He Q; Battistella L; Morse RH J Biol Chem; 2008 Feb; 283(9):5276-86. PubMed ID: 18093974 [TBL] [Abstract][Full Text] [Related]
6. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Ryan MP; Stafford GA; Yu L; Morse RH Mol Cell Biol; 2000 Aug; 20(16):5847-57. PubMed ID: 10913168 [TBL] [Abstract][Full Text] [Related]
7. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro. Huh JR; Park JM; Kim M; Carlson BA; Hatfield DL; Lee BJ Biochem Biophys Res Commun; 1999 Mar; 256(1):45-51. PubMed ID: 10066420 [TBL] [Abstract][Full Text] [Related]
8. Locus-specific suppression of ilv1 in Saccharomyces cerevisiae by deregulation of CHA1 transcription. Pedersen JO; RodrÃguez MA; Praetorius-Ibba M; Nilsson-Tillgren T; Calderón IL; Holmberg S Mol Gen Genet; 1997 Aug; 255(6):561-9. PubMed ID: 9323359 [TBL] [Abstract][Full Text] [Related]
9. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences. Shen CH; Leblanc BP; Alfieri JA; Clark DJ Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341 [TBL] [Abstract][Full Text] [Related]
10. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Ryan MP; Jones R; Morse RH Mol Cell Biol; 1998 Apr; 18(4):1774-82. PubMed ID: 9528749 [TBL] [Abstract][Full Text] [Related]
11. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae. Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139 [TBL] [Abstract][Full Text] [Related]
12. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. Gao C; Wang L; Milgrom E; Shen WC J Biol Chem; 2004 Oct; 279(41):42677-86. PubMed ID: 15294907 [TBL] [Abstract][Full Text] [Related]
13. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Bhaumik SR; Green MR Mol Cell Biol; 2002 Nov; 22(21):7365-71. PubMed ID: 12370284 [TBL] [Abstract][Full Text] [Related]
14. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases. Bornaes C; Petersen JG; Holmberg S Genetics; 1992 Jul; 131(3):531-9. PubMed ID: 1628804 [TBL] [Abstract][Full Text] [Related]
15. Cha4p of Saccharomyces cerevisiae activates transcription via serine/threonine response elements. Holmberg S; Schjerling P Genetics; 1996 Oct; 144(2):467-78. PubMed ID: 8889513 [TBL] [Abstract][Full Text] [Related]
16. Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Petersen JG; Kielland-Brandt MC; Nilsson-Tillgren T; Bornaes C; Holmberg S Genetics; 1988 Jul; 119(3):527-34. PubMed ID: 2841185 [TBL] [Abstract][Full Text] [Related]
18. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Wu L; Winston F Nucleic Acids Res; 1997 Nov; 25(21):4230-4. PubMed ID: 9336451 [TBL] [Abstract][Full Text] [Related]
19. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825 [TBL] [Abstract][Full Text] [Related]
20. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. Fleming AB; Pennings S EMBO J; 2001 Sep; 20(18):5219-31. PubMed ID: 11566885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]