BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9774358)

  • 21. Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication.
    Gao F; Sui D; Garavito RM; Worden RM; Wang DH
    Hypertension; 2009 Feb; 53(2):228-35. PubMed ID: 19075100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endocannabinoid regulates blood pressure via activation of the transient receptor potential vanilloid type 1 in Wistar rats fed a high-salt diet.
    Wang Y; Kaminski NE; Wang DH
    J Pharmacol Exp Ther; 2007 May; 321(2):763-9. PubMed ID: 17308041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin.
    Foss JD; Wainford RD; Engeland WC; Fink GD; Osborn JW
    Am J Physiol Regul Integr Comp Physiol; 2015 Jan; 308(2):R112-22. PubMed ID: 25411365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective ablation of TRPV1 by intrathecal injection of resiniferatoxin in rats increases renal sympathoexcitatory responses and salt sensitivity.
    Yu SQ; Ma S; Wang DH
    Hypertens Res; 2018 Sep; 41(9):679-690. PubMed ID: 30006640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salt-sensitive hypertension after exposure to angiotensin is associated with inability to upregulate renal epoxygenases.
    Zhao X; Pollock DM; Zeldin DC; Imig JD
    Hypertension; 2003 Oct; 42(4):775-80. PubMed ID: 12900436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats.
    Carlström M; Sällström J; Skøtt O; Larsson E; Persson AE
    Hypertension; 2007 Jun; 49(6):1342-50. PubMed ID: 17438306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The in vivo effects of Tulbhagia violacea on blood pressure in a salt-sensitive rat model.
    Mackraj I; Ramesar S; Singh M; Govender T; Baijnath H; Singh R; Gathiram P
    J Ethnopharmacol; 2008 May; 117(2):263-9. PubMed ID: 18396000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice.
    Cervenka L; Harrison-Bernard LM; Dipp S; Primrose G; Imig JD; El-Dahr SS
    Hypertension; 1999 Aug; 34(2):176-80. PubMed ID: 10454437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bilateral renal cryodenervation decreases arterial pressure and improves insulin sensitivity in fructose-fed Sprague-Dawley rats.
    Soncrant T; Komnenov D; Beierwaltes WH; Chen H; Wu M; Rossi NF
    Am J Physiol Regul Integr Comp Physiol; 2018 Sep; 315(3):R529-R538. PubMed ID: 29847164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Salt Intake Ameliorates Hyperglycemia and Insulin Resistance in WBN/Kob-
    Takagi Y; Sugimoto T; Kobayashi M; Shirai M; Asai F
    J Diabetes Res; 2018; 2018():3671892. PubMed ID: 29744365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capsaicin sensitive-sensory nerves and blood pressure regulation.
    Vaishnava P; Wang DH
    Curr Med Chem Cardiovasc Hematol Agents; 2003 Jun; 1(2):177-88. PubMed ID: 15320697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term high salt diet causes hypertension and alters renal cytokine gene expression profiles in Sprague-Dawley rats.
    Gu JW; Young E; Pan ZJ; Tucker KB; Shparago M; Huang M; Bailey AP
    Beijing Da Xue Xue Bao Yi Xue Ban; 2009 Oct; 41(5):505-15. PubMed ID: 19829664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High sodium intake increases the urinary excretion of L-3,4-dihydroxyphenylalanine but fails to alter the urinary excretion of dopamine and amine metabolites in Wistar rats.
    Vieira-Coelho MA; Pestana M; Soares-da-Silva P
    Gen Pharmacol; 1996 Dec; 27(8):1421-7. PubMed ID: 9304419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves.
    Wang Y; Wang DH
    Cardiovasc Hematol Disord Drug Targets; 2007 Mar; 7(1):37-46. PubMed ID: 17346127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. VR1-mediated depressor effects during high-salt intake: role of anandamide.
    Wang Y; Kaminski NE; Wang DH
    Hypertension; 2005 Oct; 46(4):986-91. PubMed ID: 16144988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ablation of TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal ischemia-reperfusion via infiltration of macrophages.
    Yu SQ; Ma S; Wang DH
    Clin Exp Hypertens; 2021 Apr; 43(3):254-262. PubMed ID: 33327798
    [No Abstract]   [Full Text] [Related]  

  • 37. Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β-Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats.
    Grigorova YN; Wei W; Petrashevskaya N; Zernetkina V; Juhasz O; Fenner R; Gilbert C; Lakatta EG; Shapiro JI; Bagrov AY; Fedorova OV
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low birth weight in response to salt restriction during pregnancy is not due to alterations in uterine-placental blood flow or the placental and peripheral renin-angiotensin system.
    Leandro SM; Furukawa LN; Shimizu MH; Casarini DE; Seguro AC; Patriarca G; Coelho MS; Dolnikoff MS; Heimann JC
    Physiol Behav; 2008 Sep; 95(1-2):145-51. PubMed ID: 18572207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Up-regulation of intrarenal renin-angiotensin system contributes to renal damage in high-salt induced hypertension rats].
    Wu HY; Liang YX; Bai Q; Zhuang Z; A LT; Zheng DX; Wang Y
    Beijing Da Xue Xue Bao Yi Xue Ban; 2015 Feb; 47(1):149-54. PubMed ID: 25686347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of oxidative stress in salt-induced hypertension.
    Bayorh MA; Ganafa AA; Socci RR; Silvestrov N; Abukhalaf IK
    Am J Hypertens; 2004 Jan; 17(1):31-6. PubMed ID: 14700509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.