These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9774397)

  • 21. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair.
    Rechkunova NI; Lavrik OI
    Subcell Biochem; 2010; 50():251-77. PubMed ID: 20012586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleotide excision repair in humans.
    Spivak G
    DNA Repair (Amst); 2015 Dec; 36():13-18. PubMed ID: 26388429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct.
    Perlow RA; Broyde S
    J Mol Biol; 2003 Apr; 327(4):797-818. PubMed ID: 12654264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR structure of the DNA decamer duplex containing double T*G mismatches of cis-syn cyclobutane pyrimidine dimer: implications for DNA damage recognition by the XPC-hHR23B complex.
    Lee JH; Park CJ; Shin JS; Ikegami T; Akutsu H; Choi BS
    Nucleic Acids Res; 2004; 32(8):2474-81. PubMed ID: 15121904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex.
    Sugasawa K; Shimizu Y; Iwai S; Hanaoka F
    DNA Repair (Amst); 2002 Jan; 1(1):95-107. PubMed ID: 12509299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells.
    O'Brien TJ; Brooks BR; Patierno SR
    Mol Cell Biochem; 2005 Nov; 279(1-2):85-95. PubMed ID: 16283517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A repair competition assay to assess recognition by human nucleotide excision repair.
    Hess MT; Gunz D; Naegeli H
    Nucleic Acids Res; 1996 Mar; 24(5):824-8. PubMed ID: 8600447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. End modification of a linear DNA duplex enhances NER-mediated excision of an internal Pt(II)-lesion.
    Mason TM; Smeaton MB; Cheung JC; Hanakahi LA; Miller PS
    Bioconjug Chem; 2008 May; 19(5):1064-70. PubMed ID: 18447369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos.
    Yu S; Tang S; Mayer GD; Cobb GP; Maul JD
    Aquat Toxicol; 2015 Feb; 159():256-66. PubMed ID: 25569846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multistep damage recognition mechanism for global genomic nucleotide excision repair.
    Sugasawa K; Okamoto T; Shimizu Y; Masutani C; Iwai S; Hanaoka F
    Genes Dev; 2001 Mar; 15(5):507-21. PubMed ID: 11238373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [DNA Bearing Bulky Fluorescent and Photoreactive Damage in Both Strands as Substrates of the Nucleotide Excision Repair System].
    Lukyanchikova NV; Petruseva IO; Evdokimov AN; Koroleva LS; Lavrik OI
    Mol Biol (Mosk); 2018; 52(2):277-288. PubMed ID: 29695696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P).
    Wang X; Hoshika S; Peterson RJ; Kim MJ; Benner SA; Kahn JD
    ACS Synth Biol; 2017 May; 6(5):782-792. PubMed ID: 28094993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of a DNA duplex containing 8-hydroxy-2'-deoxyguanosine opposite deoxyguanosine.
    Thiviyanathan V; Somasunderam A; Hazra TK; Mitra S; Gorenstein DG
    J Mol Biol; 2003 Jan; 325(3):433-42. PubMed ID: 12498794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aflatoxin B1 formamidopyrimidine adducts are preferentially repaired by the nucleotide excision repair pathway in vivo.
    Alekseyev YO; Hamm ML; Essigmann JM
    Carcinogenesis; 2004 Jun; 25(6):1045-51. PubMed ID: 14742311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro.
    Larson ED; Nickens D; Drummond JT
    Nucleic Acids Res; 2002 Feb; 30(3):E14. PubMed ID: 11809902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern.
    Yang Z; Hutter D; Sheng P; Sismour AM; Benner SA
    Nucleic Acids Res; 2006; 34(21):6095-101. PubMed ID: 17074747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformation-specific recognition of carcinogen-DNA adduct in escherichia coli nucleotide excision repair.
    Meneni S; Shell SM; Zou Y; Cho BP
    Chem Res Toxicol; 2007 Jan; 20(1):6-10. PubMed ID: 17226921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human cells bearing homozygous mutations in the DNA mismatch repair genes hMLH1 or hMSH2 are fully proficient in transcription-coupled nucleotide excision repair.
    Rochette PJ; Bastien N; McKay BC; Therrien JP; Drobetsky EA; Drouin R
    Oncogene; 2002 Aug; 21(37):5743-52. PubMed ID: 12173044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strand opening by the UvrA(2)B complex allows dynamic recognition of DNA damage.
    Zou Y; Van Houten B
    EMBO J; 1999 Sep; 18(17):4889-901. PubMed ID: 10469667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae.
    Scott AD; Neishabury M; Jones DH; Reed SH; Boiteux S; Waters R
    Yeast; 1999 Feb; 15(3):205-18. PubMed ID: 10077187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.