These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 9774644)

  • 1. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA; Kuchin S; Carlson M
    Mol Cell Biol; 1998 Nov; 18(11):6273-80. PubMed ID: 9774644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein.
    Treitel MA; Carlson M
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3132-6. PubMed ID: 7724528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG; Carlson M
    Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution.
    Ahuatzi D; Riera A; Pela Ez R; Herrero P; Moreno F
    J Biol Chem; 2007 Feb; 282(7):4485-4493. PubMed ID: 17178716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae.
    Vyas VK; Kuchin S; Carlson M
    Genetics; 2001 Jun; 158(2):563-72. PubMed ID: 11404322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1.
    Cziferszky A; Seiboth B; Kubicek CP
    Fungal Genet Biol; 2003 Nov; 40(2):166-75. PubMed ID: 14516769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase.
    Sanz P; Alms GR; Haystead TA; Carlson M
    Mol Cell Biol; 2000 Feb; 20(4):1321-8. PubMed ID: 10648618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1.
    Kuchin S; Carlson M
    Mol Cell Biol; 1998 Mar; 18(3):1163-71. PubMed ID: 9488431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae.
    Shirra MK; Arndt KM
    Genetics; 1999 May; 152(1):73-87. PubMed ID: 10224244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit.
    McCartney RR; Schmidt MC
    J Biol Chem; 2001 Sep; 276(39):36460-6. PubMed ID: 11486005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps.
    García-Salcedo R; Lubitz T; Beltran G; Elbing K; Tian Y; Frey S; Wolkenhauer O; Krantz M; Klipp E; Hohmann S
    FEBS J; 2014 Apr; 281(7):1901-17. PubMed ID: 24529170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms.
    Shashkova S; Wollman AJM; Leake MC; Hohmann S
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase.
    Rubenstein EM; McCartney RR; Zhang C; Shokat KM; Shirra MK; Arndt KM; Schmidt MC
    J Biol Chem; 2008 Jan; 283(1):222-230. PubMed ID: 17991748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.