These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 9774683)
1. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Daub M; Jöckel J; Quack T; Weber CK; Schmitz F; Rapp UR; Wittinghofer A; Block C Mol Cell Biol; 1998 Nov; 18(11):6698-710. PubMed ID: 9774683 [TBL] [Abstract][Full Text] [Related]
2. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). Zhou M; Horita DA; Waugh DS; Byrd RA; Morrison DK J Mol Biol; 2002 Jan; 315(3):435-46. PubMed ID: 11786023 [TBL] [Abstract][Full Text] [Related]
3. The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras. Ghosh S; Xie WQ; Quest AF; Mabrouk GM; Strum JC; Bell RM J Biol Chem; 1994 Apr; 269(13):10000-7. PubMed ID: 8144497 [TBL] [Abstract][Full Text] [Related]
4. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Mott HR; Carpenter JW; Zhong S; Ghosh S; Bell RM; Campbell SL Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8312-7. PubMed ID: 8710867 [TBL] [Abstract][Full Text] [Related]
5. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. Williams JG; Drugan JK; Yi GS; Clark GJ; Der CJ; Campbell SL J Biol Chem; 2000 Jul; 275(29):22172-9. PubMed ID: 10777480 [TBL] [Abstract][Full Text] [Related]
6. Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity. Winkler DG; Cutler RE; Drugan JK; Campbell S; Morrison DK; Cooper JA J Biol Chem; 1998 Aug; 273(34):21578-84. PubMed ID: 9705288 [TBL] [Abstract][Full Text] [Related]
7. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Tran TH; Chan AH; Young LC; Bindu L; Neale C; Messing S; Dharmaiah S; Taylor T; Denson JP; Esposito D; Nissley DV; Stephen AG; McCormick F; Simanshu DK Nat Commun; 2021 Feb; 12(1):1176. PubMed ID: 33608534 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Raf-1 signaling by a monoclonal antibody, which interferes with Raf-1 activation and with Mek substrate binding. Kolch W; Philipp A; Mischak H; Dutil EM; Mullen TM; Feramisco JR; Meinkoth JL; Rose DW Oncogene; 1996 Sep; 13(6):1305-14. PubMed ID: 8808705 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine. Improta-Brears T; Ghosh S; Bell RM Mol Cell Biochem; 1999 Aug; 198(1-2):171-8. PubMed ID: 10497893 [TBL] [Abstract][Full Text] [Related]
11. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila. Cutler RE; Morrison DK EMBO J; 1997 Apr; 16(8):1953-60. PubMed ID: 9155021 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Raf through phosphorylation and N terminus-C terminus interaction. Chong H; Guan KL J Biol Chem; 2003 Sep; 278(38):36269-76. PubMed ID: 12865432 [TBL] [Abstract][Full Text] [Related]
13. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Okada T; Hu CD; Jin TG; Kariya K; Yamawaki-Kataoka Y; Kataoka T Mol Cell Biol; 1999 Sep; 19(9):6057-64. PubMed ID: 10454553 [TBL] [Abstract][Full Text] [Related]
14. Interactions of the amino acid residue at position 31 of the c-Ha-Ras protein with Raf-1 and RalGDS. Shirouzu M; Morinaka K; Koyama S; Hu CD; Hori-Tamura N; Okada T; Kariya K; Kataoka T; Kikuchi A; Yokoyama S J Biol Chem; 1998 Mar; 273(13):7737-42. PubMed ID: 9516482 [TBL] [Abstract][Full Text] [Related]
15. Functional mapping of the N-terminal regulatory domain in the human Raf-1 protein kinase. Chow YH; Pumiglia K; Jun TH; Dent P; Sturgill TW; Jove R J Biol Chem; 1995 Jun; 270(23):14100-6. PubMed ID: 7539798 [TBL] [Abstract][Full Text] [Related]
16. The MEK kinase activity of the catalytic domain of RAF-1 is regulated independently of Ras binding in T cells. Whitehurst CE; Owaki H; Bruder JT; Rapp UR; Geppert TD J Biol Chem; 1995 Mar; 270(10):5594-9. PubMed ID: 7534298 [TBL] [Abstract][Full Text] [Related]
17. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. Hu CD; Kariya K; Tamada M; Akasaka K; Shirouzu M; Yokoyama S; Kataoka T J Biol Chem; 1995 Dec; 270(51):30274-7. PubMed ID: 8530446 [TBL] [Abstract][Full Text] [Related]
18. Structural determinants of Ras-Raf interaction analyzed in live cells. Bondeva T; Balla A; Várnai P; Balla T Mol Biol Cell; 2002 Jul; 13(7):2323-33. PubMed ID: 12134072 [TBL] [Abstract][Full Text] [Related]
19. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with ras-dependent activation of Raf-1. Hu CD; Kariya Ki; Kotani G; Shirouzu M; Yokoyama S; Kataoka T J Biol Chem; 1997 May; 272(18):11702-5. PubMed ID: 9115221 [TBL] [Abstract][Full Text] [Related]
20. 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain. Clark GJ; Drugan JK; Rossman KL; Carpenter JW; Rogers-Graham K; Fu H; Der CJ; Campbell SL J Biol Chem; 1997 Aug; 272(34):20990-3. PubMed ID: 9261098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]