These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9774700)

  • 1. Exploring functional redundancy in the immunoglobulin mu heavy-chain gene enhancer.
    Dang W; Nikolajczyk BS; Sen R
    Mol Cell Biol; 1998 Nov; 18(11):6870-8. PubMed ID: 9774700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ETS-mediated cooperation between basic helix-loop-helix motifs of the immunoglobulin mu heavy-chain gene enhancer.
    Dang W; Sun XH; Sen R
    Mol Cell Biol; 1998 Mar; 18(3):1477-88. PubMed ID: 9488464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-protein-DNA complex on a B cell-specific domain of the immunoglobulin mu heavy chain gene enhancer.
    Rao E; Dang W; Tian G; Sen R
    J Biol Chem; 1997 Mar; 272(10):6722-32. PubMed ID: 9045705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ETS-core binding factor: a common composite motif in antigen receptor gene enhancers.
    Erman B; Cortes M; Nikolajczyk BS; Speck NA; Sen R
    Mol Cell Biol; 1998 Mar; 18(3):1322-30. PubMed ID: 9488447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional activation by ETS and leucine zipper-containing basic helix-loop-helix proteins.
    Tian G; Erman B; Ishii H; Gangopadhyay SS; Sen R
    Mol Cell Biol; 1999 Apr; 19(4):2946-57. PubMed ID: 10082562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins.
    Nelsen B; Tian G; Erman B; Gregoire J; Maki R; Graves B; Sen R
    Science; 1993 Jul; 261(5117):82-6. PubMed ID: 8316859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise alignment of sites required for mu enhancer activation in B cells.
    Nikolajczyk BS; Nelsen B; Sen R
    Mol Cell Biol; 1996 Aug; 16(8):4544-54. PubMed ID: 8754855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant-negative HMGA1 blocks mu enhancer activation through a novel mechanism.
    Andreucci A; Reeves R; McCarthy KM; Nikolajczyk BS
    Biochem Biophys Res Commun; 2002 Mar; 292(2):427-33. PubMed ID: 11906180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An IgH enhancer that drives transcription through basic helix-loop-helix and Oct transcription factor binding motifs. Functional analysis of the E(mu)3' enhancer of the catfish.
    Cioffi CC; Middleton DL; Wilson MR; Miller NW; Clem LW; Warr GW
    J Biol Chem; 2001 Jul; 276(30):27825-30. PubMed ID: 11375977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context dependent transactivation domains activate the immunoglobulin mu heavy chain gene enhancer.
    Erman B; Sen R
    EMBO J; 1996 Sep; 15(17):4665-75. PubMed ID: 8887557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ETS protein-dependent accessibility changes at the immunoglobulin mu heavy chain enhancer.
    Nikolajczyk BS; Sanchez JA; Sen R
    Immunity; 1999 Jul; 11(1):11-20. PubMed ID: 10435575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial determinants of tissue-specific transcription in B cells and macrophages.
    Nikolajczyk BS; Cortes M; Feinman R; Sen R
    Mol Cell Biol; 1997 Jul; 17(7):3527-35. PubMed ID: 9199288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved enhancer element that drives FGF4 gene expression in the embryonic myotomes is synergistically activated by GATA and bHLH proteins.
    Iwahori A; Fraidenraich D; Basilico C
    Dev Biol; 2004 Jun; 270(2):525-37. PubMed ID: 15183731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions.
    Giese K; Kingsley C; Kirshner JR; Grosschedl R
    Genes Dev; 1995 Apr; 9(8):995-1008. PubMed ID: 7774816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of e47-Pip interaction on DNA resulting in transcriptional synergy and activation of immunoglobulin germ line sterile transcripts.
    Nagulapalli S; Goheer A; Pitt L; McIntosh LP; Atchison ML
    Mol Cell Biol; 2002 Oct; 22(20):7337-50. PubMed ID: 12242308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of a second lymphoid-specific enhancer element in the regulation of immunoglobulin heavy-chain gene expression.
    Libermann TA; Lenardo M; Baltimore D
    Mol Cell Biol; 1990 Jun; 10(6):3155-62. PubMed ID: 2111447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ets proteins: new factors that regulate immunoglobulin heavy-chain gene expression.
    Rivera RR; Stuiver MH; Steenbergen R; Murre C
    Mol Cell Biol; 1993 Nov; 13(11):7163-9. PubMed ID: 8413305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A composite Ets/Pit-1 binding site in the prolactin gene can mediate transcriptional responses to multiple signal transduction pathways.
    Howard PW; Maurer RA
    J Biol Chem; 1995 Sep; 270(36):20930-6. PubMed ID: 7673116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basic helix-loop-helix-zipper domain of TFE3 mediates enhancer-promoter interaction.
    Artandi SE; Cooper C; Shrivastava A; Calame K
    Mol Cell Biol; 1994 Dec; 14(12):7704-16. PubMed ID: 7969114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of transcriptional control of the IgH locus: characterization, expression, and function of TF12/HEB homologs of the catfish.
    Hikima J; Cioffi CC; Middleton DL; Wilson MR; Miller NW; Clem LW; Warr GW
    J Immunol; 2004 Nov; 173(9):5476-84. PubMed ID: 15494495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.