BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 9774976)

  • 1. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F.
    Muckenthaler M; Gray NK; Hentze MW
    Mol Cell; 1998 Sep; 2(3):383-8. PubMed ID: 9774976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal pausing and scanning arrest as mechanisms of translational regulation from cap-distal iron-responsive elements.
    Paraskeva E; Gray NK; Schläger B; Wehr K; Hentze MW
    Mol Cell Biol; 1999 Jan; 19(1):807-16. PubMed ID: 9858603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferritin Iron Responsive Elements (IREs) mRNA Interacts with eIF4G and Activates
    Khan MA
    Front Biosci (Elite Ed); 2022 Jul; 14(3):17. PubMed ID: 36137989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs.
    Gray NK; Hentze MW
    EMBO J; 1994 Aug; 13(16):3882-91. PubMed ID: 8070415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured RNA upstream of insect cap distal iron responsive elements enhances iron regulatory protein-mediated control of translation.
    Nichol H; Winzerling J
    Insect Biochem Mol Biol; 2002 Dec; 32(12):1699-710. PubMed ID: 12429122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control.
    Kapasi P; Chaudhuri S; Vyas K; Baus D; Komar AA; Fox PL; Merrick WC; Mazumder B
    Mol Cell; 2007 Jan; 25(1):113-26. PubMed ID: 17218275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.
    Gingras AC; Raught B; Sonenberg N
    Annu Rev Biochem; 1999; 68():913-63. PubMed ID: 10872469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state.
    Ptushkina M; von der Haar T; Karim MM; Hughes JM; McCarthy JE
    EMBO J; 1999 Jul; 18(14):4068-75. PubMed ID: 10406811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5'-cap structure.
    Haghighat A; Sonenberg N
    J Biol Chem; 1997 Aug; 272(35):21677-80. PubMed ID: 9268293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation.
    Pause A; Méthot N; Svitkin Y; Merrick WC; Sonenberg N
    EMBO J; 1994 Mar; 13(5):1205-15. PubMed ID: 8131750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation.
    Craig AW; Haghighat A; Yu AT; Sonenberg N
    Nature; 1998 Apr; 392(6675):520-3. PubMed ID: 9548260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed analysis of the requirements of hepatitis A virus internal ribosome entry segment for the eukaryotic initiation factor complex eIF4F.
    Borman AM; Michel YM; Kean KM
    J Virol; 2001 Sep; 75(17):7864-71. PubMed ID: 11483730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy.
    Gdaniec Z; Sierzputowska-Gracz H; Theil EC
    Biochemistry; 1998 Feb; 37(6):1505-12. PubMed ID: 9484220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation.
    Lamphear BJ; Kirchweger R; Skern T; Rhoads RE
    J Biol Chem; 1995 Sep; 270(37):21975-83. PubMed ID: 7665619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of translation initiation in eukaryotes.
    Pestova TV; Kolupaeva VG; Lomakin IB; Pilipenko EV; Shatsky IN; Agol VI; Hellen CU
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7029-36. PubMed ID: 11416183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of coordinate control of ferritin and transferrin receptor expression during rat liver regeneration.
    Cairo G; Tacchini L; Pietrangelo A
    Hepatology; 1998 Jul; 28(1):173-8. PubMed ID: 9657110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G.
    von Der Haar T; Ball PD; McCarthy JE
    J Biol Chem; 2000 Sep; 275(39):30551-5. PubMed ID: 10887196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterisation of cap-poly(A) synergy in rabbit reticulocyte lysates: the eIF4G-PABP interaction increases the functional affinity of eIF4E for the capped mRNA 5'-end.
    Borman AM; Michel YM; Kean KM
    Nucleic Acids Res; 2000 Nov; 28(21):4068-75. PubMed ID: 11058101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G.
    Ali IK; McKendrick L; Morley SJ; Jackson RJ
    J Virol; 2001 Sep; 75(17):7854-63. PubMed ID: 11483729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.