These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 977499)

  • 21. Effect of methionine hydroxy analog on growth amino acid content, and catabolic products of glucolytic rumen bacteria in vitro.
    Gil LA; Shirley RL; Moore JE
    J Dairy Sci; 1973 Jun; 56(6):757-62. PubMed ID: 4708132
    [No Abstract]   [Full Text] [Related]  

  • 22. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen.
    Dawson KA; Allison MJ; Hartman PA
    Appl Environ Microbiol; 1980 Oct; 40(4):833-9. PubMed ID: 7425628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of alpha-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas, and Bacteriodes species.
    Allison MJ; Robinson IM; Baetz AL
    J Bacteriol; 1979 Dec; 140(3):980-6. PubMed ID: 533772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of utilization of pectins from various sources by pure cultures of pectinolytic rumen bacteria and mixed cultures of rumen microorganisms.
    Kasperowicz A
    Acta Microbiol Pol; 1994; 43(1):47-56. PubMed ID: 7526615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A note on the fermentation of pectin by pure strains and combined cultures of rumen bacteria.
    SzymaƄski PT
    Acta Microbiol Pol; 1981; 30(2):159-63. PubMed ID: 6168176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria.
    Flythe MD
    Lett Appl Microbiol; 2009 Jun; 48(6):712-7. PubMed ID: 19413813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identity and interactions of rumen microbes associated with dietary sulfate-induced polioencephalomalacia in cattle.
    Cummings BA; Caldwell DR; Gould DH; Hamar DW
    Am J Vet Res; 1995 Oct; 56(10):1384-9. PubMed ID: 8928959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source.
    van Gylswyk NO; Hippe H; Rainey FA
    Int J Syst Bacteriol; 1997 Jan; 47(1):155-9. PubMed ID: 8995818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Value of the principal amino acids studied individually as the sole source of nitrogen in cultures of rumen bacteria].
    RAYNAUD M
    Ann Nutr Aliment; 1961; 15():Mem 275-7. PubMed ID: 14490734
    [No Abstract]   [Full Text] [Related]  

  • 30. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen.
    Russell JB; Sharp WM; Baldwin RL
    J Anim Sci; 1979 Feb; 48(2):251-5. PubMed ID: 43321
    [No Abstract]   [Full Text] [Related]  

  • 31. Degradation of amino acids and peptides by mixed rumen micro-organisms.
    Prins RA; van Hal-Van Gestel JC; Counotte GH
    Z Tierphysiol Tierernahr Futtermittelkd; 1979 Dec; 42(6):333-9. PubMed ID: 556513
    [No Abstract]   [Full Text] [Related]  

  • 32. Metabolic aspects of nonprotein nitrogen utilization in ruminant animals.
    Chalupa W
    Fed Proc; 1972; 31(3):1152-64. PubMed ID: 4555775
    [No Abstract]   [Full Text] [Related]  

  • 33. Protein digestion and utilization by dairy cows.
    Oldham JD; Sutton JD; McAllan AB
    Ann Rech Vet; 1979; 10(2-3):290-3. PubMed ID: 119475
    [No Abstract]   [Full Text] [Related]  

  • 34. Influence of acidosis on rumen function.
    Slyter LL
    J Anim Sci; 1976 Oct; 43(4):910-29. PubMed ID: 789319
    [No Abstract]   [Full Text] [Related]  

  • 35. Ammonia saturation constants for predominant species of rumen bacteria.
    Schaefer DM; Davis CL; Bryant MP
    J Dairy Sci; 1980 Aug; 63(8):1248-63. PubMed ID: 7419777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms.
    Mahadevan S; Erfle JD; Sauer FD
    J Anim Sci; 1980 Apr; 50(4):723-8. PubMed ID: 6989794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermentations by saccharolytic intestinal bacteria.
    Miller TL; Wolin MJ
    Am J Clin Nutr; 1979 Jan; 32(1):164-72. PubMed ID: 760499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source.
    Fessenden SW; Hackmann TJ; Ross DA; Block E; Foskolos A; Van Amburgh ME
    J Dairy Sci; 2019 Apr; 102(4):3036-3052. PubMed ID: 30660423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are ruminal bacteria armed with bacteriocins?
    Kalmokoff ML; Bartlett F; Teather RM
    J Dairy Sci; 1996 Dec; 79(12):2297-306. PubMed ID: 9029368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acylgalactosylglycerols as a source of long-chain fatty acids for a naturally occurring rumen auxotroph [proceedings].
    Hazlewood G; Dawson RM
    Biochem Soc Trans; 1977; 5(6):1721-3. PubMed ID: 563812
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.