BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9775212)

  • 1. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged photoresponses in transgenic mouse rods lacking arrestin.
    Xu J; Dodd RL; Makino CL; Simon MI; Baylor DA; Chen J
    Nature; 1997 Oct; 389(6650):505-9. PubMed ID: 9333241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness.
    Yamamoto S; Sippel KC; Berson EL; Dryja TP
    Nat Genet; 1997 Feb; 15(2):175-8. PubMed ID: 9020843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
    Doan T; Mendez A; Detwiler PB; Chen J; Rieke F
    Science; 2006 Jul; 313(5786):530-3. PubMed ID: 16873665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrestin can act as a regulator of rhodopsin photochemistry.
    Sommer ME; Farrens DL
    Vision Res; 2006 Dec; 46(27):4532-46. PubMed ID: 17069872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of rhodopsin's active lifetime by arrestin-1 expression in mammalian rods.
    Gross OP; Burns ME
    J Neurosci; 2010 Mar; 30(9):3450-7. PubMed ID: 20203204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation.
    Arshavsky VY
    Trends Neurosci; 2002 Mar; 25(3):124-6. PubMed ID: 11852136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness).
    Chen J; Simon MI; Matthes MT; Yasumura D; LaVail MM
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2978-82. PubMed ID: 10549660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bovine iris-ciliary epithelium expresses components of rod phototransduction.
    Ghosh S; Salvador-Silva M; Coca-Prados M
    Neurosci Lett; 2004 Nov; 370(1):7-12. PubMed ID: 15489008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction.
    Palczewski K; Rispoli G; Detwiler PB
    Neuron; 1992 Jan; 8(1):117-26. PubMed ID: 1309646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of mouse rod response decay by rhodopsin kinase and recoverin.
    Chen CK; Woodruff ML; Chen FS; Chen Y; Cilluffo MC; Tranchina D; Fain GL
    J Neurosci; 2012 Nov; 32(45):15998-6006. PubMed ID: 23136436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal.
    Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER
    Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites.
    Mendez A; Burns ME; Roca A; Lem J; Wu LW; Simon MI; Baylor DA; Chen J
    Neuron; 2000 Oct; 28(1):153-64. PubMed ID: 11086991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of visual arrestin from squid photoreceptors and characterization of arrestin interaction with rhodopsin and rhodopsin kinase.
    Swardfager W; Mitchell J
    J Neurochem; 2007 Apr; 101(1):223-31. PubMed ID: 17394465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses.
    Hayashi T; Gekka T; Takeuchi T; Goto-Omoto S; Kitahara K
    Ophthalmology; 2007 Jan; 114(1):134-41. PubMed ID: 17070587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a single phosphorylation site within octopus rhodopsin.
    Ohguro H; Yoshida N; Shindou H; Crabb JW; Palczewski K; Tsuda M
    Photochem Photobiol; 1998 Dec; 68(6):824-8. PubMed ID: 9867032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.