These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 9775533)

  • 1. A muscular fatigue index based on the relationships between superimposed M wave and preceding background activity.
    Kiryu T; Morishiata M; Yamada H; Okada M
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1194-204. PubMed ID: 9775533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of muscle fatigue assessed by using superposition of evoked and volitional myoelectric potentials.
    Yamada H; Kiryu T; Okada M
    Percept Mot Skills; 2001 Aug; 93(1):3-10. PubMed ID: 11693699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of muscle fatigue during biking.
    Knaflitz M; Molinari F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):17-23. PubMed ID: 12797721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue.
    Mesin L; Cescon C; Gazzoni M; Merletti R; Rainoldi A
    J Electromyogr Kinesiol; 2009 Oct; 19(5):851-63. PubMed ID: 18824375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements.
    Molinari F; Knaflitz M; Bonato P; Actis MV
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1309-16. PubMed ID: 16830935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels.
    Linnamo V; Strojnik V; Komi PV
    Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode.
    Madeleine P; Jørgensen LV; Søgaard K; Arendt-Nielsen L; Sjøgaard G
    Eur J Appl Physiol; 2002 May; 87(1):28-37. PubMed ID: 12012073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experienced and physiological fatigue in neuromuscular disorders.
    Schillings ML; Kalkman JS; Janssen HM; van Engelen BG; Bleijenberg G; Zwarts MJ
    Clin Neurophysiol; 2007 Feb; 118(2):292-300. PubMed ID: 17166763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of innervation zone on electromyographic amplitude and mean power frequency during incremental cycle ergometry.
    Malek MH; Coburn JW; Weir JP; Beck TW; Housh TJ
    J Neurosci Methods; 2006 Jul; 155(1):126-33. PubMed ID: 16510193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of muscle fiber type composition on the patterns of responses for electromyographic and mechanomyographic amplitude and mean power frequency during a fatiguing submaximal isometric muscle action.
    Beck TW; Housh TJ; Fry AC; Cramer JT; Weir JP; Schilling BK; Falvo MJ; Moore CA
    Electromyogr Clin Neurophysiol; 2007 Jul; 47(4-5):221-32. PubMed ID: 17711040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle.
    Place N; Maffiuletti NA; Martin A; Lepers R
    Muscle Nerve; 2007 Apr; 35(4):486-95. PubMed ID: 17221875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing properties of motor units during fatigue in subjects after stroke.
    Hu XL; Tong KY; Hung LK
    J Electromyogr Kinesiol; 2006 Oct; 16(5):469-76. PubMed ID: 16311042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new EMG frequency-based fatigue threshold test.
    Hendrix CR; Housh TJ; Johnson GO; Mielke M; Camic CL; Zuniga JM; Schmidt RJ
    J Neurosci Methods; 2009 Jun; 181(1):45-51. PubMed ID: 19394361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and wire electromyographic. Recording during fatiguing exercise.
    Pease WS; Elinski MA
    Electromyogr Clin Neurophysiol; 2003; 43(5):267-71. PubMed ID: 12964253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular response of young boys versus men during sustained maximal contraction.
    Halin R; Germain P; Bercier S; Kapitaniak B; Buttelli O
    Med Sci Sports Exerc; 2003 Jun; 35(6):1042-8. PubMed ID: 12783054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationships between plasma potassium, muscle excitability and fatigue during voluntary exercise in humans.
    Shushakov V; Stubbe C; Peuckert A; Endeward V; Maassen N
    Exp Physiol; 2007 Jul; 92(4):705-15. PubMed ID: 17434915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A muscle fatigue index based on the relationship between preceding background activity and myotatic reflex response (MRR).
    Kiryu T; Saitoh Y; Ishioka K
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):105-11. PubMed ID: 1612613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and EMG responses of the vastus lateralis and changes in biochemical variables to isokinetic exercise in endurance and power athletes.
    Rainoldi A; Gazzoni M; Merletti R; Minetto MA
    J Sports Sci; 2008 Feb; 26(3):321-31. PubMed ID: 18074299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramuscular pressure and tissue oxygenation during low-force static contraction do not underlie muscle fatigue.
    Blangsted AK; Vedsted P; Sjøgaard G; Søgaard K
    Acta Physiol Scand; 2005 Apr; 183(4):379-88. PubMed ID: 15799774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.