These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9775540)

  • 1. Modeling assemblies of biological cells exposed to electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1259-71. PubMed ID: 9775540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological cells with gap junctions in low-frequency electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):856-66. PubMed ID: 9644894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary-element calculations for amplification of effects of low-frequency electric fields in a doublet-shaped biological cell.
    Sekine K; Takeda T; Nagaomo K; Matsushima E
    Bioelectrochemistry; 2010 Feb; 77(2):106-13. PubMed ID: 19683969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation.
    Yamaguchi DT; Huang J; Ma D; Wang PK
    J Cell Physiol; 2002 Feb; 190(2):180-8. PubMed ID: 11807822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel equivalent circuit model for gap-connected cells.
    Fear EC; Stuchly MA
    Phys Med Biol; 1998 Jun; 43(6):1439-48. PubMed ID: 9651016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of morphological interdigitation on field coupling between smooth muscle cells.
    Vigmond EJ; Bardakjian BL
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):162-71. PubMed ID: 7868144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell culture dosimetry for low-frequency magnetic fields.
    Hart FX
    Bioelectromagnetics; 1996; 17(1):48-57. PubMed ID: 8742756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular currents alter gap junction intercellular communication in synovial fibroblasts.
    Marino AA; Kolomytkin OV; Frilot C
    Bioelectromagnetics; 2003 Apr; 24(3):199-205. PubMed ID: 12669303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric fields in bone marrow substructures at power-line frequencies.
    Chiu RS; Stuchly MA
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1103-9. PubMed ID: 15977739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-order model of membrane electric field induced by alternating external electric fields.
    Kotnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical examination of aggregation effect on the dielectric characteristics of spherical cellular suspension.
    Ron A; Fishelson N; Croitoriu N; Benayahu D; Shacham-Diamand Y
    Biophys Chem; 2009 Mar; 140(1-3):39-50. PubMed ID: 19103470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of cultured subepithelial fibroblasts in the rat small intestine. II. Localization and functional analysis of endothelin receptors and cell-shape-independent gap junction permeability.
    Furuya S; Furuya K; Sokabe M; Hiroe T; Ozaki T
    Cell Tissue Res; 2005 Jan; 319(1):103-19. PubMed ID: 15503148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments.
    Heida T; Wagenaar JB; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1195-203. PubMed ID: 12374345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling.
    Hand PE; Peskin CS
    Bull Math Biol; 2010 Aug; 72(6):1408-24. PubMed ID: 20049544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields.
    Kotnik T; Miklavcic D
    Bioelectromagnetics; 2000 Jul; 21(5):385-94. PubMed ID: 10899774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential distribution for a spheroidal cell having a conductive membrane in an electric field.
    Jerry RA; Popel AS; Brownell WE
    IEEE Trans Biomed Eng; 1996 Sep; 43(9):970-2. PubMed ID: 9214813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Abnormal shift of connexin 43 gap-junction protein induced by 50 Hz electromagnetic fields in Chinese hamster lung cells].
    Zeng Q; Hu G; Chiang H; Fu Y; Mao G; Lu D
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2002 Aug; 20(4):260-2. PubMed ID: 14694648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap junctions in Malpighian tubules of Aedes aegypti.
    Weng XH; Piermarini PM; Yamahiro A; Yu MJ; Aneshansley DJ; Beyenbach KW
    J Exp Biol; 2008 Feb; 211(Pt 3):409-22. PubMed ID: 18203997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting and estimating rectification of gap junction conductance based on simulations of dual-cell recordings from a pair and a network of coupled cells.
    Fortier PA
    J Theor Biol; 2010 Jul; 265(2):104-14. PubMed ID: 20385146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.