These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 977557)
1. Quantitative analysis of the action of Taka-amylase A on maltotriose. Suganuma T; Ohnishi M; Matsuno R; Hiromi K J Biochem; 1976 Sep; 80(3):645-8. PubMed ID: 977557 [TBL] [Abstract][Full Text] [Related]
2. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation. Suganuma T; Matsuno R; Ohnishi M; Hiromi K J Biochem; 1978 Aug; 84(2):293-316. PubMed ID: 308947 [TBL] [Abstract][Full Text] [Related]
3. Model for carbohydrase action. Aspergillus oryzae alpha-amylase degradation of maltotriose. Allen JD; Thoma JA Biochemistry; 1978 Jun; 17(12):2345-50. PubMed ID: 307964 [TBL] [Abstract][Full Text] [Related]
4. Multimolecular substrate reactions catalyzed by caabohydrases. Aspergillus oryzae alpha-amylase degradation of maltooligosaccharides. Allen JD; Thoma JA Biochemistry; 1978 Jun; 17(12):2338-44. PubMed ID: 307963 [TBL] [Abstract][Full Text] [Related]
5. Rate equation for amylase-catalyzed hydrolysis, transglycosylation and condensation of linear oligosaccharides and amylose. Matsuno R; Suganuma T; Fujimori H; Nakanishi K; Hiromi K; Kamikubo T J Biochem; 1978 Feb; 83(2):385-94. PubMed ID: 632229 [No Abstract] [Full Text] [Related]
6. Repetitive attack by Aspergillus oryzae alpha amylase. Allen JD; Thoma JA Carbohydr Res; 1978 Mar; 61():377-85. PubMed ID: 306286 [TBL] [Abstract][Full Text] [Related]
7. Modification of subsite Lys residue induced a large increase in maltosidase activity of Taka-amylase A. Kobayashi M; Miura M; Ichishima E Biochem Biophys Res Commun; 1992 Feb; 183(1):321-6. PubMed ID: 1543502 [TBL] [Abstract][Full Text] [Related]
8. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. Seigner C; Prodanov E; Marchis-Mouren G Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose. Suganuma T; Ohnishi M; Hiromi K; Nagahama T Carbohydr Res; 1996 Feb; 282(1):171-80. PubMed ID: 8721743 [TBL] [Abstract][Full Text] [Related]
10. Difference spectroscopic study of the interaction between Taka-amylase A and substrates. Kunikata T; Nitta Y; Watanabe T J Biochem; 1978 May; 83(5):1435-42. PubMed ID: 306996 [No Abstract] [Full Text] [Related]
11. Studies on the substrate specificity of Taka-amylase A. XIII. Preparation of 6-deoxy-6-iodomaltooligosaccharides and their inhibitory action against Taka-amylase A1. Omichi K; Fujii K; Mizukami T; Matsushima Y J Biochem; 1978 May; 83(5):1443-7. PubMed ID: 306997 [TBL] [Abstract][Full Text] [Related]
12. Preliminary investigation on the action modes of an oligosaccharide-producing multifunctional amylase. Wang Y; Li F; Zhang Y Appl Biochem Biotechnol; 2010 Apr; 160(7):1955-66. PubMed ID: 19662349 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of porcine pancreatic alpha-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Al Kazaz M; Desseaux V; Marchis-Mouren G; Prodanov E; Santimone M Eur J Biochem; 1998 Feb; 252(1):100-7. PubMed ID: 9523717 [TBL] [Abstract][Full Text] [Related]
14. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity. Manas NH; Bakar FD; Illias RM J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296 [TBL] [Abstract][Full Text] [Related]
15. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Seigner C; Prodanov E; Marchis-Mouren G Biochim Biophys Acta; 1987 Jun; 913(2):200-9. PubMed ID: 3496119 [TBL] [Abstract][Full Text] [Related]
16. Studies on the substrate specificity of Taka-amylase A1. XIV. Preparation of 6-deoxy-6-halogenomaltotrioses and their hydrolysis by Taka-amylase A. Omichi K; Matsushima Y J Biochem; 1978 Oct; 84(4):835-41. PubMed ID: 309468 [TBL] [Abstract][Full Text] [Related]
17. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase. Sun Y; Duan X; Wang L; Wu J J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712 [TBL] [Abstract][Full Text] [Related]
18. Studies of the action pattern of an alpha-amylase from Streptomyces praecox NA-273. Suganuma T; Mizukami T; Moori K; Ohnishi M; Hiromi K J Biochem; 1980 Jul; 88(1):131-8. PubMed ID: 6157677 [TBL] [Abstract][Full Text] [Related]
19. Molecular structure of taka-amylase A. I. Backbone chain folding at 3 A resolution. Matsuura Y; Kusunoki M; Harada W; Tanaka N; Iga Y; Yasuoka N; Toda H; Narita K; Kakudo M J Biochem; 1980 May; 87(5):1555-8. PubMed ID: 6156152 [TBL] [Abstract][Full Text] [Related]
20. Subsite profile of the active center of porcine pancreatic alpha-amylase. Kinetic studies using maltooligosaccharides as substrates. Prodanov E; Seigner C; Marchis-Mouren G Biochem Biophys Res Commun; 1984 Jul; 122(1):75-81. PubMed ID: 6611158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]