BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 9776319)

  • 21. Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes.
    Vandecasteele G; Verde I; Rücker-Martin C; Donzeau-Gouge P; Fischmeister R
    J Physiol; 2001 Jun; 533(Pt 2):329-40. PubMed ID: 11389195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells.
    Lugnier C; Schini VB
    Biochem Pharmacol; 1990 Jan; 39(1):75-84. PubMed ID: 2153383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic AMP-specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism.
    Zhu WH; Majluf-Cruz A; Omburo GA
    Life Sci; 1998; 63(4):265-74. PubMed ID: 9698035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective effects of phosphodiesterase inhibitors on different phosphodiesterases, adenosine 3',5'-monophosphate metabolism, and lipolysis in 3T3-L1 adipocytes.
    Elks ML; Manganiello VC
    Endocrinology; 1984 Oct; 115(4):1262-8. PubMed ID: 6207009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases.
    Friis UG; Jensen BL; Sethi S; Andreasen D; Hansen PB; Skøtt O
    Circ Res; 2002 May; 90(9):996-1003. PubMed ID: 12016266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus.
    Suvarna NU; O'Donnell JM
    J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective inhibition of cGMP-inhibited and cGMP-noninhibited cyclic nucleotide phosphodiesterases and relaxation of rat aorta.
    Lindgren S; Rascón A; Andersson KE; Manganiello V; Degerman E
    Biochem Pharmacol; 1991 Jul; 42(3):545-52. PubMed ID: 1650216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of several newer cardiotonic drugs on cardiac cyclic AMP metabolism.
    Ahn HS; Eardley D; Watkins R; Prioli N
    Biochem Pharmacol; 1986 Apr; 35(7):1113-21. PubMed ID: 2421728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation.
    Thomas RE; Armstrong DT; Gilchrist RB
    Dev Biol; 2002 Apr; 244(2):215-25. PubMed ID: 11944932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries.
    Birk S; Edvinsson L; Olesen J; Kruuse C
    Eur J Pharmacol; 2004 Apr; 489(1-2):93-100. PubMed ID: 15063160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria.
    Wen JF; Cui X; Jin JY; Kim SM; Kim SZ; Kim SH; Lee HS; Cho KW
    Circ Res; 2004 Apr; 94(7):936-43. PubMed ID: 14988225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis.
    Torphy TJ; Zhou HL; Burman M; Huang LB
    Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases.
    Manns JM; Brenna KJ; Colman RW; Sheth SB
    Thromb Haemost; 2002 May; 87(5):873-9. PubMed ID: 12038792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of calcium current by low-Km cyclic AMP phosphodiesterases in cardiac cells.
    Fischmeister R; Hartzell HC
    Mol Pharmacol; 1990 Sep; 38(3):426-33. PubMed ID: 1698253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B.
    Zhang W; Ke H; Tretiakova AP; Jameson B; Colman RW
    Protein Sci; 2001 Aug; 10(8):1481-9. PubMed ID: 11468344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3',5'-cyclic monophosphate.
    von Bülow V; Rink L; Haase H
    J Immunol; 2005 Oct; 175(7):4697-705. PubMed ID: 16177117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for the presence of essential histidine and cysteine residues in platelet cGMP-inhibited phosphodiesterase.
    Ghazaleh FA; Omburo GA; Colman RW
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):495-501. PubMed ID: 8713077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of a cGMP-stimulated cAMP phosphodiesterase by protein kinase C in a liver Golgi-endosomal fraction.
    Geoffroy V; Fouque F; Nivet V; Clot JP; Lugnier C; Desbuquois B; Benelli C
    Eur J Biochem; 1999 Feb; 259(3):892-900. PubMed ID: 10092879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle.
    Torphy TJ; Cieslinski LB
    Mol Pharmacol; 1990 Feb; 37(2):206-14. PubMed ID: 2154670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta.
    Lugnier C; Schoeffter P; Le Bec A; Strouthou E; Stoclet JC
    Biochem Pharmacol; 1986 May; 35(10):1743-51. PubMed ID: 2423089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.