These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9776394)

  • 1. Mechanism of membrane damage by Clostridium perfringens alpha-toxin.
    Nagahama M; Michiue K; Mukai M; Ochi S; Sakurai J
    Microbiol Immunol; 1998; 42(8):533-8. PubMed ID: 9776394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of unsaturated bonds in the sn-2 acyl chain of phosphatidylcholine on the membrane-damaging action of Clostridium perfringens alpha-toxin toward liposomes.
    Nagahama M; Otsuka A; Oda M; Singh RK; Ziora ZM; Imagawa H; Nishizawa M; Sakurai J
    Biochim Biophys Acta; 2007 Nov; 1768(11):2940-5. PubMed ID: 17919452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-damaging action of Clostridium perfringens alpha-toxin on phospholipid liposomes.
    Nagahama M; Michiue K; Sakurai J
    Biochim Biophys Acta; 1996 Apr; 1280(1):120-6. PubMed ID: 8634306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligomerization of Clostridium perfringens epsilon-toxin is dependent upon membrane fluidity in liposomes.
    Nagahama M; Hara H; Fernandez-Miyakawa M; Itohayashi Y; Sakurai J
    Biochemistry; 2006 Jan; 45(1):296-302. PubMed ID: 16388606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fatty acyl domain of phospholipids on the membrane-channel formation of Staphylococcus aureus alpha-toxin in liposome membrane.
    Tomita T; Watanabe M; Yasuda T
    Biochim Biophys Acta; 1992 Mar; 1104(2):325-30. PubMed ID: 1372180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the C-domain in the biological activities of Clostridium perfringens alpha-toxin.
    Nagahama M; Mukai M; Morimitsu S; Ochi S; Sakurai J
    Microbiol Immunol; 2002; 46(10):647-55. PubMed ID: 12477243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tyrosine-57 and -65 in membrane-damaging and sphingomyelinase activities of Clostridium perfringens alpha-toxin.
    Nagahama M; Otsuka A; Sakurai J
    Biochim Biophys Acta; 2006 Jan; 1762(1):110-4. PubMed ID: 16278077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC; Heuck AP
    Biochemistry; 2010 Nov; 49(44):9498-507. PubMed ID: 20886855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lipidic factors on membrane cholesterol topology--mode of binding of theta-toxin to cholesterol in liposomes.
    Ohno-Iwashita Y; Iwamoto M; Ando S; Iwashita S
    Biochim Biophys Acta; 1992 Aug; 1109(1):81-90. PubMed ID: 1504083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening of the active site of Clostridium perfringens alpha-toxin may be triggered by membrane binding.
    Titball RW; Naylor CE; Miller J; Moss DS; Basak AK
    Int J Med Microbiol; 2000 Oct; 290(4-5):357-61. PubMed ID: 11111911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-Binding Mechanism of Clostridium perfringens Alpha-Toxin.
    Oda M; Terao Y; Sakurai J; Nagahama M
    Toxins (Basel); 2015 Dec; 7(12):5268-75. PubMed ID: 26633512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipase C produced by Clostridium botulinum types C and D: comparison of gene, enzymatic, and biological activities with those of Clostridium perfringens alpha-toxin.
    Fatmawati NN; Sakaguchi Y; Suzuki T; Oda M; Shimizu K; Yamamoto Y; Sakurai J; Matsushita O; Oguma K
    Acta Med Okayama; 2013; 67(1):9-18. PubMed ID: 23439504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of membrane fluidity on the assembly of Staphylococcus aureus alpha-toxin, a channel-forming protein, in liposome membrane.
    Tomita T; Watanabe M; Yasuda T
    J Biol Chem; 1992 Jul; 267(19):13391-7. PubMed ID: 1618841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties.
    Justin N; Walker N; Bullifent HL; Songer G; Bueschel DM; Jost H; Naylor C; Miller J; Moss DS; Titball RW; Basak AK
    Biochemistry; 2002 May; 41(20):6253-62. PubMed ID: 12009886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-damaging action of staphylococcal alpha-toxin on phospholipid-cholesterol liposomes.
    Watanabe M; Tomita T; Yasuda T
    Biochim Biophys Acta; 1987 Apr; 898(3):257-65. PubMed ID: 3567181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The carboxy-terminal C2-like domain of the alpha-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition.
    Guillouard I; Alzari PM; Saliou B; Cole ST
    Mol Microbiol; 1997 Dec; 26(5):867-76. PubMed ID: 9426125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of streptolysin S on liposomes. Influence of membrane lipid composition on toxin action.
    Duncan JL; Buckingham L
    Biochim Biophys Acta; 1981 Oct; 648(1):6-12. PubMed ID: 6895326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of the alpha-toxin-hexamer of Staphylococcus aureus in the liposome membrane.
    Ikigai H; Nakae T
    J Biol Chem; 1987 Feb; 262(5):2156-60. PubMed ID: 3818591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-complementation of Clostridium perfringens PLC and Clostridium septicum alpha-toxin mutants reveals PLC is sufficient to mediate gas gangrene.
    Kennedy CL; Lyras D; Cheung JK; Hiscox TJ; Emmins JJ; Rood JI
    Microbes Infect; 2009 Mar; 11(3):413-8. PubMed ID: 19284973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipase C and sphingomyelinase activities of the Clostridium perfringens alpha-toxin.
    Urbina P; Flores-Díaz M; Alape-Girón A; Alonso A; Goni FM
    Chem Phys Lipids; 2009 May; 159(1):51-7. PubMed ID: 19428363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.